No CrossRef data available.
Article contents
DERIVATION RELATION FOR FINITE MULTIPLE ZETA VALUES IN $\widehat{{\mathcal{A}}}$
Published online by Cambridge University Press: 08 January 2020
Abstract
Ihara et al. proved the derivation relation for multiple zeta values. The first-named author obtained its counterpart for finite multiple zeta values in ${\mathcal{A}}$. In this paper, we present its generalization in $\widehat{{\mathcal{A}}}$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2020 Australian Mathematical Publishing Association Inc.
Footnotes
Communicated by M. Coons
References
Hoffman, M. E., ‘The algebra of multiple harmonic series’, J. Algebra 194 (1997), 477–495.Google Scholar
Hoffman, M. E., ‘Quasi-symmetric functions and mod p multiple harmonic sums’, Kyushu J. Math. 69 (2015), 345–366.Google Scholar
Horikawa, Y., Oyama, K. and Murahara, H., ‘A note on derivation relations for multiple zeta values and finite multiple zeta values’, Preprint, 2018, arXiv:1809.08389.Google Scholar
Ihara, K., Kaneko, M. and Zagier, D., ‘Derivation and double shuffle relations for multiple zeta values’, Compos. Math. 142 (2006), 307–338.Google Scholar
Jarossay, D., ‘An explicit theory of $\unicode[STIX]{x1D70B}^{\text{un,crys}}(\mathbb{P}^{1}-\{0,\unicode[STIX]{x1D707}_{N},\infty \})$’, Preprint, 2014, arXiv:1412.5099.Google Scholar
Murahara, H., ‘Derivation relations for finite multiple zeta values’, Int. J. Number Theory 13 (2017), 419–427.Google Scholar
Rosen, J., ‘Asymptotic relations for truncated multiple zeta values’, J. Lond. Math. Soc. (2) 91 (2015), 554–572.Google Scholar
Seki, S., ‘Finite multiple polylogarithms’, Doctoral Dissertation, Osaka University, 2017.Google Scholar
Seki, S., ‘The p -adic duality for the finite star-multiple polylogarithms’, Tohoku Math. J. (2) 71 (2019), 111–122.Google Scholar