Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-09T03:16:55.906Z Has data issue: false hasContentIssue false

Computing subfields in algebraic number fields

Published online by Cambridge University Press:  09 April 2009

John D. Dixon
Affiliation:
Department of Mathematics and Statistics Carleton UniversityOttawa K1S 5B6, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K:= Q(α) be an algebraic number field which is given by specifying the minimal polynomial f(X) for α over Q. We describe a procedure for finding the subfields L of K by constructing pairs (w(X), g(X)) of polynomials over Q such that L= Q(w(α)) and g(X) is the minimal polynomial for w(α). The construction uses local information obtained from the Frobenius-Chebotarev theorem about the Galois group Gal(f), and computations over p-adic extensions of Q.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Abbott, J. A., Bradford, K. J. and Davenport, J. H., ‘Factorization of polynomials’, Trends in Computer Algebra, Lecture Notes Comput. Sci. 296, (Springer, New York, 1988).Google Scholar
[2]Borevich, Z. I. and Shafarevich, I. R., Number Theory, (Academic Press, New York, 1966).Google Scholar
[3]Bradford, R. J., On the Computation of Integral Bases and Defects of Integrity, (Ph.D. thesis), Bath Univ., Bath, 1988.Google Scholar
[4]Butler, G. and McKay, J., ‘The transitive groups of degree up to 11’, Comm. Algebra 11 (1983), 863911.Google Scholar
[5]Dixon, J. D., ‘Exact solutions of linear equations using p-adic expansions’, Numer. Math. 40 (1982), 137141.Google Scholar
[6]Erbach, D. W., Fischer, J. and McKay, J., ‘Polynomials with PSL(2, 7) as Galois group’, J. Number Theory 11 (1979), 6975.Google Scholar
[7]Fincke, U. and Pohst, M., ‘Improved methods for calculating vectors of short length in a lattice, including a complexity analysis’, Math. Comp. 44 (1985), 463471.Google Scholar
[8]Kaltofen, E., ‘On the complexity of finding short vectors in integer lattices’, Computer Algebra, Lecture Notes Comput. Sci. 162, (Springer, New York, 1983).Google Scholar
[9]Kaplansky, I., Fields and Rings, (Univ. Chicago Press, Chicago, 1969).Google Scholar
[10]Lagarias, J. C., Montgomery, H. L. and Odlyzko, A. M., ‘A bound for the least prime ideal in the Chebotarev Density Theorem’, Invent. Math. 54 (1979), 271296.CrossRefGoogle Scholar
[11]Lang, S., Algebra, (Addision-Wesley, Reading, Mass., 1965).Google Scholar
[12]Lenstra, A. K., Lenstra, H. W. Jr and Lovasz, L., ‘Factoring polynomials with rational coefficients’, Math. Ann. 261 (1982), 513534.Google Scholar
[13]Lidl, R. and Niederreiter, H., Introduction to Finite Fields and Their Applications, (Cambridge Univ. Press, 1986).Google Scholar
[14]Lipson, J., ‘Newton's method: a great algebraic algorithm’, Proc. 1976 ACM Symposium on Symbolic and Algebraic Computing (Jenks, R. D., ed.), A.C.M., 1976.Google Scholar
[15]McKay, J., ‘Some remarks on computing Galois groups’, SIAM J. Comput. 8 (1979), 344347.Google Scholar
[16]McKay, J. and Regener, E., ‘Actions of permutation groups on r-sets’, Comm. Algebra 13 (1985), 619630.CrossRefGoogle Scholar
[17]Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, (Polish Sci. Publ., Warsaw, 1974).Google Scholar
[18]Royle, G. F., ‘The transitive groups of degree twelve’, J. Symbol. Comput. 4 (1987), 255268.Google Scholar
[19]Serre, J.-P., ‘Quelques applications du théorème de densité de Chebotarev’, Publ. Math. I.H.E.S., Bures-sur-Yvette, 1981.Google Scholar
[20]Stauduhar, R. P., ‘The determination of Galois groups’, Math. Comp. 27 (1973), 981996.Google Scholar
[21]Soicher, L., The Computation of Galois Groups, (Master's thesis), Concordia Univ., Montreal, 1981.Google Scholar
[22]Soicher, L. and McKay, J., ‘Computing Galois groups over the rationals’, J. Number Theory 20 (1985), 273281.Google Scholar
[23]Trager, B., ‘Algebraic factoring and rational function integration’, Proc. 1976 ACM Symposium on Symbolic and Algebraic Computing (Jenks, R. D., ed.), A.C.M., 1976.Google Scholar
[24]Tschebotareff, N., ‘Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören’, Math. Ann. 95 (1926), 191228.CrossRefGoogle Scholar
[25]van der Waerden, B. L., Modern Algebra, (Ungar, New York, 1948).Google Scholar
[26]Yun, D. Y. Y., ‘Algebraic algorithms using p-adic constructions’, Proc. 1976 ACM Symposium on Symbolic and Algebraic Computing (Jenks, R. D., ed.), A.C.M., 1976.Google Scholar
[27]Zassenhaus, H., ‘On Hensel factorization, I’, J. Number Theory 1 (1969), 291311.Google Scholar