Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T17:01:35.883Z Has data issue: false hasContentIssue false

Compactness properties for perturbed semigroups and application to transport equation

Published online by Cambridge University Press:  09 April 2009

Khalid Latrach
Affiliation:
Université de CorseDépartement de Mathématiques 20250 CorteFrance
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the comparsion results for positive compact operators by Aliprantis and Burkinshow, Mokhtar Kharroubi investigated cimpactness properties of positive semigroups on Banach latttices. The aim of this paper is to study these properties in general Banach spaces (without positivity). Our results generalize a part fo those obtained by Mokhtar-Kharroubi to general Banach spaces context. More specifically, we derive conditions which ensure the compactness of the remainder term Rn(t) for some inteter n. The improvement here is that it can applied directly to the neutron transport equation for a wide class of collision operators.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Aliprantis, C. D. and Burkinshow, O., ‘Positive compact operators on Banach Lattices’, Math. Z. 174 (1980), 289298.CrossRefGoogle Scholar
[2]Brezis, H., Analyse fonctionnelle: théorie et applications (Masson, Paris, 1983).Google Scholar
[3]Dautray, R. and Lions, J. L., Analyse mathématique et calcul numérique, Tome 9 (Masson, Paris. 1988).Google Scholar
[4]Greenberg, W., Van Der Mee, C. and Protopopescu, V., Boundary value problems in abstract kinetic theory (Birkhäuser, Basel, 1987).CrossRefGoogle Scholar
[5]Greiner, G., ‘Spectral properties and asymptotic behaviour of the linear transport equation’, Math. Z. 185 (1984), 167177.CrossRefGoogle Scholar
[6]Kato, T., Perturbation theory for linear operators (Springer, Berlin, 1966).Google Scholar
[7]Mokhtar-Kharroubi, M., ‘Effets régularisants en théorie neutronique’, C. R. Acad. Sci. Paris, Série I 310 (1990), 545548.Google Scholar
[8]Mokhtar-Kharroubi, M., ‘Compartness properties for positive semigroups on Banach lattices and applications’, Houston J. Math. 17 (1991), 2538.Google Scholar
[9]Mokhtar-Kharroubi, M., ‘Time asymptotic behaviour and compactness in neutron transport theory’, Eur. J. Mech. B Fluids 11 (1992), 3968.Google Scholar
[10]Pazy, A., Semigroups of linear operator and applications to differential equations (springer, Berlin, 1983).CrossRefGoogle Scholar
[11]Takac, P., ‘Spectral mapping theorem for the exponential function in linear transport theory’, Transport. Theory Statist. Phys. 14 (1985), 655667.CrossRefGoogle Scholar
[12]Vidav, I., ‘Existence and uniqueness of nonnegative eigenfunction of the Boltzmann operator’, J. Math. Anal. Appl. 22 (1968), 144155.CrossRefGoogle Scholar
[13]Vidav, I., ‘Spectra of perturbed semigroups with applications to transport theory’, J. Math. Anal. Appl. 30 (1970), 264279.CrossRefGoogle Scholar
[14]Viogt, J., ‘A perturbation theorem for the essential spectral radius of strongly continuous semigroups’, Monatsh. Math. 90 (1980), 153161.CrossRefGoogle Scholar
[15]Viogt, J., ‘Spectral properties of the neutron transort equation’, J. Math. Anal. Appl. 106 (1985), 140153.CrossRefGoogle Scholar
[16]Weis, L. W., ‘A generalization of the Vidav-Jörgens perturbation theorem for semigroups and its application to transport theory’, J. Math. Anal. Appl. 129 (1988), 623.CrossRefGoogle Scholar