No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
A well-known result of Zygmund states that if f ∈ L (log+L) ½ on the circle group T and E is a Hadamard set of integers, then . In this paper we investigate similar results for the classes on an arbitrary infinite compact abelian group G and Sidon subsets E of the dual Γ. These results are obtained as special cases of more general results concerning a new class of lacunary sets Sαβ, 0 < α ≤ β, where a subset E of Γ is an Sα β set if . We also prove partial results on the distinctness of the Sαβ sets in the index β.