Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:30:13.773Z Has data issue: false hasContentIssue false

Bifurcation and stability of positive solutions of a two-point boundary value problem

Published online by Cambridge University Press:  09 April 2009

Shin-Hwa Wang
Affiliation:
Department of MathematicsNational Tsing Hua UniversityHsinchu, Taiwan 300 R.O.C.
Nicholas D. Kazarinoff
Affiliation:
Department of MathematicsNational Tsing Hua UniversityHsinchu, Taiwan 300 R.O.C.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the existence of multiple positive solutions of a nonlinear two-point boundary value problem by modifying a “time map” technique introduced by J. Smoller and A. Wasserman. We count the number of positive solutions and find their Conley indices and thus determine their stabilities.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Ambrosetti, A., ‘On the exact number of positive solutions of convex nonlinear problems’, Bulletino, U.M.I. (5) 15–A (1978), 610615.Google Scholar
[2]Ambrosetti, A. and Hess, P., ‘Positive solutions of asymptotically linear elliptic eigenvalue problems’, J. Math. Anal. Appl. 73 (1980), 411422.CrossRefGoogle Scholar
[3]Berestycki, H., ‘Le nombre de solutions de certain problèmes semilinéaires elliptiques’, J. Funct. Anal. 40 (1980), 129.CrossRefGoogle Scholar
[4]Bramson, M., Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs Amer. Math. Soc. 285, 1983.Google Scholar
[5]Dancer, E. N., ‘On the number of positive solutions of weakly non-linear elliptic equations when a parameter is large’, Proc. London Math. Soc. 53 (1987), 429452.Google Scholar
[6]de Figueiredo, D. G., ‘On the uniqueness of positive solutions of the Dirichlet problem –Δu = λ sin u,’ pp. 8083 in Nonlinear Partial Differential Equations and Applications vol. 7, Brezis, H. and Lions, J. L. (editors) (Pitman, London, 1984).Google Scholar
[7]Gelfand, I., ‘Some problems in the theory of quasilinear equations’, Amer. Math. Soc. Translations 29 (1963), 295381.CrossRefGoogle Scholar
[8]Kolmogoroff, A., Petrovsky, I., and Piscounoff, N., ‘Étude de l'équations de la diffusion avec croissance de la quantité de matière et son application à un problème biologique’, Bull. Univ. Moscow. Ser. Internat., Sec. A 1 (1937), 125.Google Scholar
[9]Sevryuk, M. B., Reversible Systems (Lecture Notes in Math. 1211, Springer-Verlag, Berlin, Heidelberg, 1986).CrossRefGoogle Scholar
[10]Seidman, T. I., ‘Asymptotic growth of solutions of –Δu = λf(u) for large λ,’ Indiana Univ. Math. J. 30 (1981), 305311.CrossRefGoogle Scholar
[11]Smoller, J., Shock Waves and Reaction-Diffusion Equations (Springer-Verlag, New York, 1983).CrossRefGoogle Scholar
[12]Smoller, J. and Wasserman, A., ‘Global bifurcation of steady-state solutions’, J. Differential Equations 39 (1981), 269290.CrossRefGoogle Scholar
[13]Smoller, J. and Wasserman, A., ‘Generic bifurcation of steady-state solutions’, J. Differential Equations 52 (1984), 432438.CrossRefGoogle Scholar
[14]Wang, S. H., ‘A correction for a paper by J. Smoller and A. Wasserman’, J. Differential Equations 77 (1989), 199202.CrossRefGoogle Scholar
[15]Wang, S. H. and Kazarinoff, N. D., ‘Bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable’, J. Austral. Math. Soc. (Series A) 52 (1992), 343355.CrossRefGoogle Scholar