Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T19:41:53.807Z Has data issue: false hasContentIssue false

The asymmetric product of three inhomogeneous linear forms

Published online by Cambridge University Press:  09 April 2009

A. C. Woods
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown, given any positive real number λ and any point (x1, x2, x3) of R3 and any lattice λ R3; that there exists a point (z1, z2, z3) of λ for which

which generalizes a theorem due to Remak.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1981

References

[1]Birch, B. J. & Swinnerton-Dyer, H. P. F., ‘On the inhomogeneous minimum of the product of n linear formsMathematika 3 (1956), 2539.CrossRefGoogle Scholar
[2]Blaney, H., ‘Some asymmetric inequalitiesProc. Cambridge Philos. Soc. 46 (1950), 359376.CrossRefGoogle Scholar
[3]Cassels, J. W. S., An introduction to the geometry of numbers, p. 326 (Springer-Verlag, (1959)).CrossRefGoogle Scholar
[4]Cole, A. J., ‘On the product of n linear formsQuart. J. Math. Oxford Ser. 3 (1952), 5662.CrossRefGoogle Scholar
[5]Davenport, H., ‘A simple proof of Remak's theorem on the product of three linear formsJ. London Math. Soc. 14 (1939), 4751.CrossRefGoogle Scholar
[6]Davenport, H., ‘Non-homogeneous ternary quadratic formsActa Math. 80 (1948), 6595.CrossRefGoogle Scholar
[7]Davenport, H., ‘On the product of three homogeneous linear formsProc. London Math. Soc. (2) 44 (1938), 412431. See alsoCrossRefGoogle Scholar
Davenport, H., ‘Note on the product of three homogeneous linear formsJ. London Math. Soc. 16 (1941), 98101.CrossRefGoogle Scholar
[8]Mahier, K., ‘On a property of positive definite ternary quadratic formsJ. London Math. Soc. 15 (1940), 305320.Google Scholar
[9]Mahler, K., ‘On lattice points in n-dimensional star bodies. I Existence theoremsProc. Roy. Soc.London Ser. A 187 (1946), 151187.Google Scholar
[10]Minkowski, H., Gesammelte Abhandlungen I, p. 342 (Leipzig, Berlin (1911)).Google Scholar
[11]Narzullaev, KH. N., ‘The representation of a unimodular matrix in the form DOTU for n = 3Math. Notes 18 (1975), 713719.CrossRefGoogle Scholar
[12]Remak, R., ‘Vereilgemeinerung eines Minkowskischen Satzes’I, II Math. Z. 17 (1923), 134; 18 (1923), 173–200.CrossRefGoogle Scholar
[13]Sawyer, D. B., ‘The product of two non-homogeneous linear formsJ. London Math. Soc. 23 (1948), 250251.CrossRefGoogle Scholar
[14]Woods, A. C., ‘Divided cells and a conjecture of Minkowski’, to appear.Google Scholar