Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T09:16:38.791Z Has data issue: false hasContentIssue false

Archimedean components of triangular norms

Published online by Cambridge University Press:  09 April 2009

Erich Peter Klement
Affiliation:
Department of AlgebraStochastics and Knowledge-Based Mathematical SystemsJohannes Kepler UniversityA-4040 LinzAustria e-mail: [email protected]
Radko Mesiar
Affiliation:
Department of Mathematics and Descriptive Geometry Faculty of Civil EngineeringSlovak University of TechnologySK-81 368 Bratislava Slovakia and Institute of Information Theory and Automation Czech Academy of Sciences CZ-182 08 Prague 8 Czech Republic e-mail: [email protected]
Endre Pap
Affiliation:
Department of Mathematics and InformaticsUniversity of Novi Sad, YU-21000 Novi Sad, Serbia and Montenegro e-mail: [email protected]@eunet.yu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Archimedean components of triangular norms (which turn the closed unit interval into anabelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordinal sums and additive generators, new types of left-continuous triangular norms are constructed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Aczél, J., Lectures on functional equations and their applications (Academic Press, New York, 1966).Google Scholar
[2]Butnariu, D. and Klement, E. P., Triangular norm-based measures and games with fuzzy coalitions (Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar
[3]Carruth, J. H., Hildebrant, J. A. and Koch, R. J., The theory of topological semigroups, Monographs Textbooks Pure Appl. Math. 75 (Marcel Dekker, New York, 1983).Google Scholar
[4]Clifford, A. H., ‘Naturally totally ordered commutative semigroups’, Amer. J. Math. 76 (1954), 631646.Google Scholar
[5]Clifford, A. H., ‘Connected ordered topological semigroups with idempotent endpoints. I’, Trans. Amer. Math. Soc. 88 (1958), 8098.Google Scholar
[6]De Baets, B. and Mesiar, R., ‘Ordinal sums of aggregation operators’, in: Technologies for constructing intelligent systems. 2: Tools (eds. Bouchon-Meunier, B., Gutiérrez-Ríos, J., Magdalena, L. and Yager, R. R.) (Physica, Heidelberg, 2002) pp. 137148.Google Scholar
[7]Faucett, W. M., ‘Compact semigroups irreducibly connected between two idempotents’, Proc. Amer. Math. Soc. 6 (1955), 741747.CrossRefGoogle Scholar
[8]Fodor, J. C. and Roubens, M., Fuzzy preference modelling and multicriteria decision support (Kluwer Academic Publishers, Dordrecht, 1994).Google Scholar
[9]Fuchs, L., Partially ordered algebraic systems (Pergamon Press, Oxford, 1963).Google Scholar
[10]Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W. and Scott, D. S., A Compendium of continuous lattices (Springer, Berlin, 1980).Google Scholar
[11]Gottwald, S., A treatise on many-valued logic, Stud. Logic Comput. (Research Studies Press, Baldock, 2001).Google Scholar
[12]Hadžić, O. and Pap, E., Fixed point theory in probabilistic metric spaces (Kluwer Academic Publishers, Dordrecht, 2001).Google Scholar
[13]Hájek, P., Metamathematics of fuzzy logic (Kluwer Academic Publishers, Dordrecht, 1998).Google Scholar
[14]Hion, I. W., ‘Ordered semigroups’, Izv. Akad. Nauk SSSR 21 (1957), 209222 (Russian).Google Scholar
[15]Hofmann, K. H. and Lawson, J. D., ‘Linearly ordered semigroups: Historic origins and A. H. Clifford's influence’, in: Semigroup theory and its applications (eds. Hofmann, K. H. and Mislove, M. W.), London Math. Soc. Lecture Notes 231 (Cambridge University Press, Cambridge, 1996) pp. 1539.Google Scholar
[16]Jenei, S., ‘Structure of left-continuous triangular norms with strong induced negations. (I) Rotation construction’, J. Appl. Non-Classical Logics 10 (2000), 8392.Google Scholar
[17]Kimberling, C., ‘On a class of associative functions’, Publ. Math. Debrecen 20 (1973), 2139.Google Scholar
[18]Klement, E. P., Mesiar, R. and Pap, E., Triangular Norms (Kluwer Academic Publishers, Dordrecht, 2000).Google Scholar
[19]Klement, E. P., Mesiar, R. and Pap, E., ‘Uniform approximation of associative copulas by strict and non-strict copulas’, Illinois J. Math. 45 (2001), 13931400.Google Scholar
[20]Klement, E. P., Mesiar, R. and Pap, E., ‘Triangular norms as ordinal sums of semigroups in the sense of A.H. Clifford’, Semigroup Forum 65 (2002), 7182.Google Scholar
[21]Klement, E. P. and Weber, S., ‘Fundamentals of a generalized measure theory’, in: Mathematics of Fuzzy Sets. Logic, Topology, and Measure Theory (eds. Höhle, U. and Rodabaugh, S. E.), The Handbook of Fuzzy Sets Series (Kluwer Academic Publishers, Boston, 1999) pp. 633651.CrossRefGoogle Scholar
[22]Kolesárová, A., ‘A note on Archimedean triangular norms’, BUSEFAL 80 (1999), 5760.Google Scholar
[23]Ling, C. M., ‘Representation of associative functions’, Publ. Math. Debrecen 12 (1965), 189212.Google Scholar
[24]Menger, K., ‘Statistical metrics’, Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535537.Google Scholar
[25]Mesiarová, A., ‘Continuous triangular subnorms’, Fuzzy Sets and Systems, 142 (2004), 7583.CrossRefGoogle Scholar
[26]Mostert, P. S. and Shields, A. L., ‘On the structure of semi-groups on a compact manifold with boundary’, Ann. of Math., II. Ser. 65 (1957), 117143.Google Scholar
[27]Nelsen, R. B., An introduction to copulas, Lecture Notes in Statistics 139 (Springer, New York, 1999).Google Scholar
[28]Paalman-de Miranda, A. B., Topological semigroups, Mathematical Centre Tracts 11 (Matematisch Centrum, Amsterdam, 1964).Google Scholar
[29]Pap, E., Null-additive set functions (Kluwer Academic Publishers, Dordrecht, 1995).Google Scholar
[30]Schweizer, B. and Sklar, A., ‘Statistical metric spaces’, Pacific J. Math. 10 (1960), 313334.Google Scholar
[31]Schweizer, B. and Sklar, A., Probabilistic metric spaces (North-Holland, New York, 1983).Google Scholar
[32]Schweizer, B. and Smítal, J., ‘Measures of chaos and a spectral decomposition of dynamical systems on the interval’, Trans. Amer. Math. Soc. 344 (1994), 737754.Google Scholar
[33]Viceník, P., ‘Additive generators of non-continuous triangular norms’, in: Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets (eds. Rodabaugh, S. E. and Klement, E. P.) (Kluwer Academic Publishers, Dordrecht, 2003) pp. 441454.Google Scholar
[34]Zadeh, L. A., ‘Fuzzy sets’, Inform. and Control 8 (1965), 338353.Google Scholar