No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
We develop the idea of a θ-ordering (where θ is an infinite cardinal) for a family of infinite sets. A θ-ordering of the family A is a well ordering of A which decomposes A into a union of pairwise disjoint intervals in a special way, which facilitates certain transfinite constructions. We show that several standard combinatorial properties, for instance that of the family A having a θ-transversal, are simple consequences of A possessing a θ-ordering. Most of the paper is devoted to showing that under suitable restrictions, an almost disjoint family will have a θ-ordering. The restrictions involve either intersection conditions on A (the intersection of every λ-size subfamily of A has size at most κ) or a chain condition on A.