Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T13:17:16.879Z Has data issue: false hasContentIssue false

An extension theorem for integral representations

Published online by Cambridge University Press:  09 April 2009

Wolfgang Knapp
Affiliation:
Universität Tübingen Mathematisches InstitutAuf der Morgenstelle 10 D-72076 Tübingen, Germany
Peter Schmid
Affiliation:
Universität Tübingen Mathematisches InstitutAuf der Morgenstelle 10 D-72076 Tübingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the field Q(εm) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix representation over its ring Z[εm] of integers? In the present paper it is shown that this holds true provided it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that the answer is at least affirmative when the exponent is replaced by the order, and provides for a general qualitative result.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Gliff, G., Ritter, J. and Weiss, A., ‘Group representations and integrality’, J. Reine Angew. Math. 426 (1992), 193202.Google Scholar
[2]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite simple groups (Clarendon Press, Oxford, 1985).Google Scholar
[3]Curtis, C. W. and Reiner, I., Methods of representation theory, I (Wiley, New York, 1981).Google Scholar
[4]Dade, E. C., ‘Character values and Clifford extensions for finite groups’, Proc. London Math. Soc. 29 (1974), 214236.Google Scholar
[5]Dade, E. C., ‘Characters of groups with normal extra special subgroups’, Math. Z. 152 (1976), 131.CrossRefGoogle Scholar
[6]Feit, W., ‘The computation of some Schur indices’, Israel J. Math. 46 (1983), 274300.Google Scholar
[7]Feit, W., ‘Schur indices of characters of groups related to finite sporadic simple groups’, Israel J. Math. 93 (1996), 229251.Google Scholar
[8]Ferrero, B., ‘The cyclotomic Z2-extension of imaginary quadratic fields’, Amer. J. Math. 102 (1980), 447459.Google Scholar
[9]Schönert, M. et al. , GAP — groups, algorithms and programming, version 3, release 4 (Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1995).Google Scholar
[10]Gold, R., ‘Examples of Iwasawa invariants, II’, Acta Arith. 26 (1975), 233240.CrossRefGoogle Scholar
[11]Grandet, M. and Jaulent, J.-F., ‘Sur la capitulation dans une Ze-extension’, J. Reine Angew. Math. 362 (1985), 213217.Google Scholar
[12]Greenberg, R., ‘On the Iwasawa invariants of totally real number fields’, Amer. J. Math. 98 (1976), 263284.Google Scholar
[13]Hasse, H., Über die Klassenzahl abelscher Zahlkörper (Akademie-Verlag, Berlin, 1952).Google Scholar
[14]Hore, K. and Ogura, H., ‘On the ideal class groups of imaginary abelian fields’, Trans. Amer. Math. Soc. 347 (1995), 25172532.CrossRefGoogle Scholar
[15]Huppert, B., Endliche Gruppen, I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[16]Kida, Y., ‘Cyclotomic Z2-extensions of J-fields’, J. Number Theory 14 (1982), 340352.Google Scholar
[17]Reinhardt, U. and Schmid, P., ‘Invariant lattices and modular decomposition of irreducible representations’, J. Algebra 87 (1984), 89104.Google Scholar
[18]Riese, U., and Schmid, P., ‘Schur indices and Schur groups, II’, J. Algebra 182 (1996), 183200.CrossRefGoogle Scholar
[19]Ritter, J. and Weiss, A., ‘Galois action on integral representations’, J. London Math. Soc. 46 (1992), 411431.Google Scholar
[20]Schmid, P., ‘The Fong reduction revisited’, J. Algebra 162 (1993), 345354.Google Scholar
[21]Schmid, P., ‘On 2-blocks of characters with defect 1’, J. Algebra 183 (1996), 235244.Google Scholar
[22]Schur, I., ‘Über die Darstellungen der symmetrischen und alternierenden Gruppen durch gebrochene lineare Substitutionen’, J. Math. 139 (1911), 155250.Google Scholar
[23]Solomon, L., ‘The representations of finite groups in algebraic number fields’, J. Math. Soc. Japan 19 (1961), 144182.Google Scholar
[24]Tateyama, K., ‘On the ideal class group of some cyclotomic fields’, Proc. Japan Acad. 58, Ser. A (1982), 283285.Google Scholar
[25]Turull, A., ‘The Schur index of projective characters of symmertric and alternating groups’, Ann. of Math. (2) 135 (1992), 91124.CrossRefGoogle Scholar
[26]Washington, L. C., Introduction to cyclotomic fields, Graduate Texts in Math. 83 (Springer, Berlin, 1982).Google Scholar
[27]Willems, W., ‘Blocks of defect zero in infinite simple groups of Lie type’, J. Algebra 113 (1988), 511522.Google Scholar