Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T03:28:49.523Z Has data issue: false hasContentIssue false

Algebraic characterizations of locally compact groups

Published online by Cambridge University Press:  09 April 2009

Juan J. Font
Affiliation:
Departamento de Matemáticas Universidad Jaume I Campus Penyeta, E-12071 CastellónSpain e-mail: [email protected], [email protected] fax: 34-64-345847
Salvador Hernández
Affiliation:
Departamento de Matemáticas Universidad Jaume I Campus Penyeta, E-12071 CastellónSpain e-mail: [email protected], [email protected] fax: 34-64-345847
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G1, G2 be locally compact real-compact spaces. A linear map T defined from C(G1) into C(G2) is said to be separating or disjointness preserving if f = g ≡ 0 implies Tf = Tg ≡ 0 f or all f, gC(G1). In this paper we prove that both a separating map which preserves non-vanishing functions and a separating bijection which satisfies condition (M) (see Definition 4) are automatically continuous and can be written as weighted composition maps. We also study the effect of separating surjections (respectively injections) on the underlying spaces G1 and G2.

Next we apply the above results to give an algebraic characterization of locally compact Abelian groups, similar to the one given in [7] for compact Abelian groups in the presence of ring isomorphisms.

Finally, locally compact (not necessarily Abelian) groups are considered. We provide a sharpening of a result of Edwards and study the effect of onto (respectively injective) weighted composition maps on the groups G1 and G2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[1]Abramovich, Y., ‘Multiplicative representation of disjointness preserving operators’, Indag. Math. 45 (1983), 265279.CrossRefGoogle Scholar
[2]Abramovich, Y., Veksler, A. I. and Koldunov, A. V., ‘On operators preserving disjointness’, Soviet Math. Dokl. 248 (1979), 10331036.Google Scholar
[3]Abramovich, Y., Arenson, E. L. and Kitover, A. K., BanachC(K)- modules and operators preserving disjointness, Pitman Res. Notes Math. Ser. 277 (Longman, Harlow, 1993).Google Scholar
[4]Araujo, J., Beckenstein, E. and Narici, L., ‘On biseparating maps between real-compact spaces’, J. Math. Anal. Appl. 192 (1995), 258265.CrossRefGoogle Scholar
[5]Arendt, W., ‘Spectral properties of Lamperti operators’, Indiana Univ. Math. J. 32 (1983), 199215.CrossRefGoogle Scholar
[6]Beckenstein, E., Narici, L. and Todd, R., ‘Automatic continuity of linear maps on spaces of continuous functions’, Manuscripta Math. 62 (1988), 257275.CrossRefGoogle Scholar
[7]Deshpande, M. V. and Ghorpade, S. R., ‘Algebraic characterization of compact Abelian groups’, Amer. Math. Monthly 98 (1991), 235237.CrossRefGoogle Scholar
[8]Edwards, R. E., ‘Bipositive and isometric isomorphisms of some convolution algebras’, Canad. J. Math. 17 (1965), 839846.CrossRefGoogle Scholar
[9]Engelking, R., General topology (Polish Scientific Publishers, Warszawa, 1977).Google Scholar
[10]Feldman, W. A. and Porter, J. F., ‘Operators on Banach lattices as weighted compositions’, J. London Math. Soc. 33 (1986), 149156.CrossRefGoogle Scholar
[11]Font, J. J. and Hernández, S., ‘Separating maps between locally compact spaces’, Arch. Math. 63 (1994), 158165.CrossRefGoogle Scholar
[12]Font, J. J. and Hernández, S., ‘Automatic continuity and representation of certain linear isomorphisms between group algebras’, Indag. Math. 6 (1995), 397409.CrossRefGoogle Scholar
[13]Gelfand, I. and Kolmogoroff, A., ‘On the ring of continuous functions on a topological space’, Dokl. Akad. Nauk SSSR 22 (1939), 1115.Google Scholar
[14]Gillman, L. and Jerison, M., Rings of continuous Junctions (Van Nostrand, Princeton, 1960).CrossRefGoogle Scholar
[15]Hart, D. R., ‘Some properties of disjointness preserving operators’, Indag. Math. 47 (1985), 183197.CrossRefGoogle Scholar
[16]Hernández, S., Beckenstein, E. and Narici, L., ‘Banach-Stone theorems and separating maps’, Manuscripta Math. 86 (1995), 409416.CrossRefGoogle Scholar
[17]Hewitt, E. and Ross, K. A., Abstract harmonic analysis I (Springer, New York, 1963).Google Scholar
[18]Huijsmans, C. B. and de Pagter, B., ‘Invertible disjointness preserving operators’, Proc. Edinburgh Math. Soc. 37 (1993), 125132.CrossRefGoogle Scholar
[19]Jamison, J. E. and Rajagopalan, M., ‘Weighted composition operators on C(X, E)’, J. Operator Theory 19 (1988), 307317.Google Scholar
[20]Jarosz, K., ‘Automatic continuity of separating linear isomorphisms’, Canad. Math. Bull. 33 (1990), 139144.CrossRefGoogle Scholar
[21]de Pagter, B., ‘A note on disjointness preserving operators’, Proc. Amer. Math. Soc. 90 (1984), 543549.CrossRefGoogle Scholar
[22]Rudin, W., Fourier analysis on groups (Interscience Publishers, New York, 1962).Google Scholar
[23]Weir, M. D., Hewitt-Nachbin spaces, Stud. Math. Appl. 17 (North Holland, Amsterdam, 1975).Google Scholar
[24]Ylinen, K., ‘Isomorphisms of spacesand convolution algebras of functions’, Ann. Acad. Sci. Fenn. Ser. A Math. Dissertationes 510 (1972).Google Scholar