Article contents
CONDITION (K) FOR BOOLEAN DYNAMICAL SYSTEMS
Published online by Cambridge University Press: 27 May 2021
Abstract
We generalize Condition (K) from directed graphs to Boolean dynamical systems and show that a locally finite Boolean dynamical system $({{\mathcal {B}}},{{\mathcal {L}}},\theta )$ with countable ${{\mathcal {B}}}$ and ${{\mathcal {L}}}$ satisfies Condition (K) if and only if every ideal of its $C^*$ -algebra is gauge-invariant, if and only if its $C^*$ -algebra has the (weak) ideal property, and if and only if its $C^*$ -algebra has topological dimension zero. As a corollary we prove that if the $C^*$ -algebra of a locally finite Boolean dynamical system with ${{\mathcal {B}}}$ and ${{\mathcal {L}}}$ countable either has real rank zero or is purely infinite, then $({{\mathcal {B}}}, {{\mathcal {L}}}, \theta )$ satisfies Condition (K). We also generalize the notion of maximal tails from directed graph to Boolean dynamical systems and use this to give a complete description of the primitive ideal space of the $C^*$ -algebra of a locally finite Boolean dynamical system that satisfies Condition (K) and has countable ${{\mathcal {B}}}$ and ${{\mathcal {L}}}$ .
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2021 Australian Mathematical Publishing Association Inc
Footnotes
Communicated by Aidan Sims
Research partially supported by NRF-2017R1D1A1B03030540.
References
- 3
- Cited by