No CrossRef data available.
Article contents
Weak cardinality theorems†
Published online by Cambridge University Press: 12 March 2014
Abstract
Kummer's Cardinality Theorem states that a language A must be recursive if a Turing machine can exclude for any n words , …, one of the n + 1 possibilities for the cardinality of {, …, }⋂ A. There was good reason to believe that this theorem is a peculiarity of recursion theory: neither the Cardinality Theorem nor weak forms of it hold for resource-bounded computational models like polynomial time. This belief may be flawed. In this paper it is shown that weak cardinality theorems hold for finite automata and also for other models. An explanation is proposed as to why recursion-theoretic and automata-theoretic weak cardinality theorems hold, but not corresponding 'middle-ground theorems': The recursion- and automata-theoretic weak cardinality theorems are instantiations of purely logical weak cardinality theorems. The logical theorems can be instantiated for logical structures characterizing recursive computations and finite automata computations. A corresponding structure characterizing polynomial time computations does not exist.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2005
Footnotes
An earlier version of this paper was presented at the FCT 2003 conference [Tantau, 2003b].