Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T21:00:36.377Z Has data issue: false hasContentIssue false

Variations of the Martin-Solovay tree

Published online by Cambridge University Press:  12 March 2014

Greg Hjorth*
Affiliation:
Mathematics Department, California Institute of Technology, Pasadena, California 91125, E-mail: [email protected]

Abstract

Assuming determinacy, the model L[T2] does not depend on the choice of T2.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BeKe]Becker, H. S. and Kechris, A. S., Sets of ordinals constructible from trees and the third Victoria Delfino problem, Contemporary Mathematics, vol. 31 (1984), pp. 1329.CrossRefGoogle Scholar
[Ha]Harrington, L. A., A powerless proof of a theorem of Silver, handwritten note, 11, 1976, Berkeley.Google Scholar
[Je]Jech, J., Set theory, Academic Press, New York, San Francisco, and London, 1978.Google Scholar
[Ke1]Kechris, A. S., Countable ordinals and the analytic hierarchy, II, Annals of Mathematical Logic, vol. 15 (1978), 1978, pp. 193223.CrossRefGoogle Scholar
[Ke2]Kechris, A. S., Thin sets for equivalence relations and perfect set theorems for ûω, notes, 07 1979, Los Angeles.Google Scholar
[Ke3]Kechris, A. S., Lectures on definable group actions and equivalence relations,, unpublished manuscript.Google Scholar
[KeMal]Kechris, A. S. and Martin, D. A., On the theory of sets of reals, notes, 01 1979, Los Angeles.Google Scholar
[KeMa2]Kechris, A. S. and Martin, D. A., On the theory of sets of reals, Bulletin of the American Mathematical Society, vol. 84 (1978), pp. 149151.CrossRefGoogle Scholar
[KeMaMo]Kechris, A. S., Martin, D. A., and Moschovakis, Y. N., Cabal seminar 79–81, Lecture Notes in Mathematics, vol. 1019, Springer-Verlag, Berlin and New York, 1983.Google Scholar
[KeMaSo]Kechris, A. S., Martin, D. A., and Solovay, R. M., Introduction to Q-theory, Cabal Seminar 79–81, Lecture Notes in Mathematics vol. 1019, Springer-Verlag, Berlin and New York, 1983, pp. 199281.Google Scholar
[KeSo]Kechris, A. S. and Solovay, R. M., On the relative consistency strength of determinacy hypotheses, Transactions of the American Mathematical Society, vol. 190 (1985), pp. 179211.Google Scholar
[Ma]Mansfield, R., A Souslin operation for , Israel Journal of Mathematics, vol. 9 (1971), pp. 367379.CrossRefGoogle Scholar
[MaSo]Martin, D. A. and Solovay, R. M., A basis theorem for sets of reals, Annals of Mathematics, vol. 89 (1969), pp. 138160.CrossRefGoogle Scholar
[Mo1]Moschovakis, Y. N., Uniformization in a playful universe, Bulletin of the American Mathematical Society, vol. 77 (1971), pp. 731736.CrossRefGoogle Scholar
[Mo2]Moschovakis, Y. N., Descriptive set theory, North Holland Publishing Company, Amsterdam, New York, and Oxford, 1980.Google Scholar
[Sh]Shelah, S., On co-k-Souslin relations, Israel Journal of Mathematics, vol. 47 (1984), pp. 139153.CrossRefGoogle Scholar
[Sho]Shoenfield, J. R., The problem of predicativity, Essays on the foundations of mathematics, Magnes Press, Jerusalem, 1961.Google Scholar
[Wo]Woodin, W. H., On the consistency strength of projective absoluteness, Proceedings of Herbrand Symposium, Logic Colloquium '81, North-Holland, Amsterdam, 1982, pp. 365384.CrossRefGoogle Scholar