Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T11:26:31.041Z Has data issue: false hasContentIssue false

Undecidability in diagonalizable algebras

Published online by Cambridge University Press:  12 March 2014

V. Yu. Shavrukov*
Affiliation:
Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
*
Department of Philosophy, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands, E-mail: [email protected]

Abstract

If a formal theory T is able to reason about its own syntax, then the diagonalizable algebra of T is defined as its Lindenbaum sentence algebra endowed with a unary operator □ which sends a sentence φ to the sentence □φ asserting the provability of φ in T. We prove that the first order theories of diagonalizable algebras of a wide class of theories are undecidable and establish some related results.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Абашидзе, M. A., Онекоморых, своῠсмеа алϩебр Маϩарυ, Лοгико-киесемантические иследования, Мецниереба, Тбилиси, 1981, pp. 111127.Google ScholarPubMed
[2]Artemov, S. N. and Beklemishev, L. D., On propositional quantifiers in provability logic, Notre Dame Journal of Formal Logic, vol. 34 (1993), pp. 401419.CrossRefGoogle Scholar
[3]Aptëmob, C. H., Ο мο∂альньιх, лоƨυκа, аκϲυмамυзυрующυх ∂οκазуемосмь, Изɞесмυя Аκа∂емυυ Науκ СССР. Серυя мамемамυчесκая, vol. 49 (1985), pp. 11231154, English translation: S. N. Artemov, On modal logics axiomatizing provability, Mathematics of the USSR — Izvestiya, vol. 27 (1986), pp. 401–429.Google Scholar
[4]Beklemishev, L., Remarks on Magari algebras of PA and IΔ0 + EXP, Logic and algebra (Ursini, A. and Agliano, P., editors), Marcel Dekker, New York, 1996, pp. 317325.Google Scholar
[5]Beklemishev, L. D., On bimodal logics of provability, Annals of Pure and Applied Logic, vol. 68 (1994), pp. 115159.CrossRefGoogle Scholar
[6]Беклемишев, Л. Д., Ο κлассυ∮υкацυυ ƞроƞозυцυональных лоϩυк ∂оказуемосмυ, Изɞ∂емυυ Ака∂емυυ Наук CCCp. Серυя мамемамυческая, vol. 53 (1989), pp. 915943, English translation: L. D. Beklemishev, On the classification of propositional provability logics, Mathematics of the USSR — Izvestiya, vol. 35 (1990), pp. 247–275.Google Scholar
[7]Berarducci, A., The interpretability logic of Peano arithmetic, this Journal, vol. 55 (1990), pp. 10591089.Google Scholar
[8]Cocke, J. and Minsky, M., Universality of Tag systems with P = 2, Journal of the Association for Computing Machinery, vol. 11 (1964), pp. 1520.CrossRefGoogle Scholar
[9]Dzhaparidze, G., The logic of linear tolerance, Studia Logica, vol. 51 (1992), pp. 249277.CrossRefGoogle Scholar
[10]Dzhaparidze, G., A generalized notion of weak interpretability and the corresponding modal logic, Annals of Pure and Applied Logic, vol. 61 (1993), pp. 113160.CrossRefGoogle Scholar
[11]Feferman, S., Arithmetization of metamathematics in a general setting, Fundamenta Mathematical, vol. 49 (1960), pp. 3592.CrossRefGoogle Scholar
[12]Hájek, P. and Pudlák, P., Metamathematics of first-order arithmetic, Springer-Verlag, Berlin, 1993.CrossRefGoogle Scholar
[13]Herrmann, E., The undecidability of the elementary theory of the lattice of recursively enumerable sets (abstract), Frege Conference 1984 (Wechsung, G., editor), Akademie-Verlag, Berlin, 1984, pp. 6672.Google Scholar
[14]de Jongh, D. and Veltman, F., Provability logics for relative interpretability, Mathematical logic (Petkov, P. P., editor), Plenum Press, New York, 1990, pp. 3142.CrossRefGoogle Scholar
[15]Lindström, P., On partially conservative sentences and interpretability, Proceedings of the American Mathematical Society, vol. 91 (1984), pp. 436443.CrossRefGoogle Scholar
[16]Magari, R., The diagonalizable algebras (the algebraization of the theories which express Theor.: II), Bollettino delta Unione Matematica Italiana. Serie IV, vol. 12 (1975), pp. 117125, Supplemento al fasc. 3.Google Scholar
[17]Magari, R., Representation and duality theory for diagonalizable algebras (the algebraization of theories which express Theor; IV), Studia Logica, vol. 34 (1975), pp. 305313.CrossRefGoogle Scholar
[18]Minsky, M. L., Recursive unsolvability of Post's problem of “Tag” and other topics in theory of Turing machines, Annals of Mathematics. Second Series, vol. 74 (1961), pp. 437455.CrossRefGoogle Scholar
[19]Minsky, M. L., Computation: Finite and infinite machines, Prentice-Hall, Englewood Cliffs, 1967.Google Scholar
[20]Montagna, F., On the diagonalizable algebra of Peano arithmetic, Bollettino delta Unione Matematica Italiana. Serie V, vol. 16-B (1979), pp. 795812.Google Scholar
[21]Montagna, F., Interpretations of the first-order theory of diagonalizable algebras in Peano arithmetic, Studia Logica, vol. 39 (1980), pp. 347354.CrossRefGoogle Scholar
[22]Montagna, F., The undecidability of the first-order theory of diagonalizable algebras, Studia Logica, vol. 39 (1980), pp. 355359.CrossRefGoogle Scholar
[23]Shavrukov, V. Yu., A note on the diagonalizable algebras of PA and ZF, Annals of Pure and Applied Logic, vol. 61 (1993), pp. 161173.CrossRefGoogle Scholar
[24]Shavrukov, V. Yu., Subalgebras of diagonalizable algebras of theories containing arithmetic, Dissertationes Mathematical vol. 323 (1993).Google Scholar
[25]Smoryński, C., The finite inseparability of the first-order theory of diagonalisable algebras, Studia Logica, vol. 41 (1982), pp. 347349.CrossRefGoogle Scholar
[26]Smoryński, C., Fixed point algebras, Bulletin (New Series) of the American Mathematical Society, vol. 6 (1982), pp. 317356.CrossRefGoogle Scholar
[27]Smoryński, C., Self-reference and modal logic, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
[28]Soare, R. I., Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Springer-Verlag, Berlin, 1987.Google Scholar
[29]Solovay, R. M., Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 25 (1976), pp. 287304.CrossRefGoogle Scholar
[30]Visser, A., The provability logics of recursively enumerable theories extending Peano Arithmetic at arbitrary theories extending Peano Arithmetic, Journal of Philosophical Logic, vol. 13 (1984), pp. 97113.CrossRefGoogle Scholar
[31]Zambella, D., On the proofs of arithmetical completeness for interpretability logic, Notre Dame Journal of Formal Logic, vol. 33 (1992), pp. 542551.CrossRefGoogle Scholar
[32]Zambella, D., Shavrukov's theorem on the subalgebras of diagonalizable algebras for theories containing IΔ0 + exp, Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 147157.CrossRefGoogle Scholar