Published online by Cambridge University Press: 12 March 2014
In his famous paper [1] on the elementary theory of finite fields Ax considered fields K with the property that every absolutely irreducible variety defined over K has K-rational points. These fields have been called pseudo algebraically closed (pac) and also regularly closed, and extensively studied by Jarden, Éršov, Fried, Wheeler and others, culminating with the basic works [8] and [11].
The above algebraic-geometric definition of pac fields can be put into the following equivalent model-theoretic version: K is existentially complete (ec) relative to the first order language of fields into each regular field extension of K. It has been this characterization of pac fields which the author extended in [2] to ordered fields. An ordered field (K, <) is called in [2] pseudo real closed (prc) if (K, <) is ec in every ordered field extension (L, <) with L regular over K. The concept of pre ordered field has also been introduced by McKenna in his thesis [15] by analogy with the original algebraic-geometric definition of pac fields.
Given a positive integer e, a system K = (K; P1, …, Pe), where K is a field and P1, …, Pe are orders of K (identified with the corresponding positive cones), is called an e-fold ordered field (e-field). In his thesis [9] van den Dries developed a model theory for e-fields. The main result proved in [9, Chapter II] states that the theory e-OF of e-fields is model con. panionable, and the models of the model companion e-OF are explicitly described.