Published online by Cambridge University Press: 12 March 2014
Ordinary equational logic is a connective-free fragment of first-order logic which is concerned with total functions under the relation of ordinary equality. In [AN] (see also [AN1]) and in [Cr] it has been extended in two equivalent ways into a near-equational system of logic for partial functions. The extension given in [Cr] deals with partial functions under two relationships: a relationship of existence-dependent existence and one of existence-dependent Kleene equality. For the language that involves both relationships a set of rules was given that is complete. Those rules in the set that involve only existence-dependent existence turned out to be complete for the sublanguage that involves this relationship only. In the present paper we give a set of rules that is complete for the other sublanguage, namely the language of partial functions under existence-dependent Kleene equality.
This language lacks a certain, often needed, power of expressing existence and fails, in particular, to be an extension of the language that underlies ordinary equational logic. That it possesses a fairly simple complete set of rules is therefore perhaps more of theoretical than of practical interest. The present paper is thus intended to serve as a supplement to [Cr] and, less directly, to [AN]. The subject is further rounded out, and some contrast is provided, by [Rob]. The systems of logic treated there are based on the weaker language in which partial functions are considered under the more basic relation of Kleene equality.