Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T05:01:35.004Z Has data issue: false hasContentIssue false

Subgroups of stable groups

Published online by Cambridge University Press:  12 March 2014

Frank Wagner*
Affiliation:
Mathematical Institute, Oxford University, Oxford 0X1 3LB, England

Abstract

We define the notion of generic for an arbitrary subgroup H of a stable group, and show that H has a definable hull with the same generic properties. We then apply this to the theory of stable fields.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Du]Duret, J.-L., Les corps faiblement algébriquement clos non séparablement clos ont la propriété d'indépendance, Model theory of algebra and arithmetic, Lecture Notes in Mathematics, vol. 834, Springer-Verlag, Berlin, 1980, pp. 136162.CrossRefGoogle Scholar
[Pi]Pillay, A., An introduction to stability theory, Oxford University Press, Oxford, 1983.Google Scholar
[Po1]Poizat, B., Théorie des modèles, Nur al-mantiq wal-ma'rifah, Villeurbanne, 1985.Google Scholar
[Po2]Poizat, B., Groupes stables, Nur al-mantiq wal-ma'rifah, Villeurbanne, 1987.Google Scholar
[Po3]Poizat, B., Sous-groupes définissables d'un groupe stable, this Journal, vol. 46 (1981), pp. 137145.Google Scholar
[Po4]Poizat, B., Groupes stables, avec types génériques réguliers, this Journal, vol. 48 (1983), pp. 339355.Google Scholar
[Sh]Shelah, S., Classification theory, North-Holland, Amsterdam, 1978.Google Scholar