Published online by Cambridge University Press: 12 March 2014
The question, “What do initial segments of the degrees of unsolvability look like?” has interested recursive function theorists for several years. Sacks [4] hypothesized that Sis a finite initial segment of degrees if and only if S is order-isomorphic to a finite initial segment of some upper semilattice with a least element. Lachlan [2] suggested the generalization, S is an initial segment of degrees if S is order-isomorphic to some countable upper semilattice with both least and greatest elements.
This work was partly supported by NSF grant GP 8732. We are grateful to A. Nerode for many helpful discussions on this problem.