Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T08:41:39.178Z Has data issue: false hasContentIssue false

SIMPLE GROUPS OF MORLEY RANK 5 ARE BAD

Published online by Cambridge University Press:  23 October 2018

ADRIEN DELORO
Affiliation:
SORBONNE UNIVERSITÉS, UPMC INSTITUT DE MATHÉMATIQUES DE JUSSIEU – PARIS RIVE GAUCHE CASE 247, 4 PLACE JUSSIEU, 75252 PARIS, FRANCEE-mail: [email protected]
JOSHUA WISCONS
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS CALIFORNIA STATE UNIVERSITY SACRAMENTO SACRAMENTO, CA 95819, USAE-mail: [email protected]

Abstract

We show that any simple group of Morley rank 5 is a bad group all of whose proper definable connected subgroups are nilpotent of rank at most 2. The main result is then used to catalog the nonsoluble connected groups of Morley rank 5.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altınel, T., Borovik, A. V., and Cherlin, G., Simple Groups of Finite Morley Rank, Mathematical Surveys and Monographs, vol. 145, American Mathematical Society, Providence, RI, 2008.CrossRefGoogle Scholar
Altınel, T. and Wiscons, J., Recognizing $PG{L_3}$via generic 4-transitivity. Accepted in Journal of the European Mathematical Society. Preprint, 2015, arXiv:1505.08129 [math.LO].Google Scholar
Borovik, A., Burdges, J., and Cherlin, G., Involutions in groups of finite Morley rank of degenerate type. Selecta Mathematica, vol. 13 (2007), no. 1, pp. 122.CrossRefGoogle Scholar
Borovik, A. and Deloro, A., Rank 3 bingo, this JOURNAL, vol. 81 (2016), no. 4, pp. 14511480.Google Scholar
Borovik, A. and Nesin, A., Groups of Finite Morley Rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994.Google Scholar
Burdges, J. and Cherlin, G., Semisimple torsion in groups of finite Morley rank. Journal of Mathematical Logic, vol. 9 (2009), no. 2, pp. 183200.CrossRefGoogle Scholar
Cherlin, G., Groups of small Morley rank. Annals of Mathematical Logic, vol. 17 (1979), no. 1–2, pp. 128.CrossRefGoogle Scholar
Cherlin, G., Good tori in groups of finite Morley rank. Journal of Group Theory, vol. 8 (2005), no. 5, pp. 613621.CrossRefGoogle Scholar
Cherlin, G. and Jaligot, É., Tame minimal simple groups of finite Morley rank. Journal of Algebra, vol. 276 (2004), no. 1, pp. 1379.CrossRefGoogle Scholar
Deloro, A., Actions of groups of finite Morley rank on small abelian groups. Bulletin of Symbolic Logic, vol. 15 (2009), no. 1, pp. 7090.CrossRefGoogle Scholar
Deloro, A. and Jaligot, É., Involutive automorphisms of $N_ \circ ^ \circ$-groups of finite Morley rank. Pacific Journal of Mathematics, vol. 285 (2016), no. 1, pp. 111184.CrossRefGoogle Scholar
Frécon, O., Simple groups of Morley rank 3 are algebraic. Journal of the American Mathematical Society, published online at https://doi.org/10.1090/jams/892 on November 7, 2017.CrossRefGoogle Scholar
Poizat, B., Groupes Stables, Nur al-Mantiq wal-Ma’rifah, vol. 2, Bruno Poizat, Lyon, 1987.Google Scholar
Reineke, J., Gruppen, Minimale. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), no. 4, pp. 357359.CrossRefGoogle Scholar
Wagner, F. O., Bad groups. Mathematical Logic and its Applications, RIMS Kôkyûroku 2050, Kyoto University, Japan. Preprint, 2017, to appear. arXiv:1703.01764 [math.LO].Google Scholar
Wiscons, J., On groups of finite Morley rank with a split $BN$-pair of rank 1. Journal of Algebra, vol. 330 (2011), no. 1, pp. 431447.CrossRefGoogle Scholar
Wiscons, J., Moufang sets of finite Morley rank of odd type. Journal of Algebra, vol. 402 (2014), pp. 479498.CrossRefGoogle Scholar
Wiscons, J., Groups of Morley rank 4, this JOURNAL, vol. 81 (2016), no. 1, pp. 6579.Google Scholar