Published online by Cambridge University Press: 22 December 2015
We consider ${\cal S}$, the class of finite semilattices; ${\cal T}$, the class of finite treeable semilattices; and ${{\cal T}_m}$, the subclass of ${\cal T}$ which contains trees with branching bounded by m. We prove that ${\cal E}{\cal S}$, the class of finite lattices with linear extensions, is a Ramsey class. We calculate Ramsey degrees for structures in ${\cal S}$, ${\cal T}$, and ${{\cal T}_m}$. In addition to this we give a topological interpretation of our results and we apply our result to canonization of linear orderings on finite semilattices. In particular, we give an example of a Fraïssé class ${\cal K}$ which is not a Hrushovski class, and for which the automorphism group of the Fraïssé limit of ${\cal K}$ is not extremely amenable (with the infinite universal minimal flow) but is uniquely ergodic.