Published online by Cambridge University Press: 12 March 2014
A monadic formula ψ(Y) is a selector for a formula φ(Y) in a structure if there exists a unique subset P of which satisfies ψ and this P also satisfies φ. We show that for every ordinal α ≥ ωω there are formulas having no selector in the structure (α, <). For α ≤ ω1, we decide which formulas have a selector in (α, <) , and construct selectors for them. We deduce the impossibility of a full generalization of the Büchi-Landweber solvability theorem from (ω, <) to (ωω, <). We state a partial extension of that theorem to all countable ordinals. To each formula we assign a selection degree which measures “how difficult it is to select”. We show that in a countable ordinal all non-selectable formulas share the same degree.