No CrossRef data available.
Published online by Cambridge University Press: 21 December 2018
A set $G \subseteq \omega$ is n-generic for a positive integer n if and only if every ${\rm{\Sigma }}_n^0$ formula of G is decided by a finite initial segment of G in the sense of Cohen forcing. It is shown here that every n-generic set G is properly ${\rm{\Sigma }}_n^0$ in some G-recursive X. As a corollary, we also prove that for every $n > 1$ and every n-generic set G there exists a G-recursive X which is generalized ${\rm{lo}}{{\rm{w}}_n}$ but not generalized ${\rm{lo}}{{\rm{w}}_{n - 1}}$. Thus we confirm two conjectures of Jockusch [4].