Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T10:43:06.587Z Has data issue: false hasContentIssue false

Reduced coproducts of compact Hausdorff spaces

Published online by Cambridge University Press:  12 March 2014

Paul Bankston*
Affiliation:
Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin 53233

Abstract

By analyzing how one obtains the Stone space of the reduced product of an indexed collection of Boolean algebras from the Stone spaces of those algebras, we derive a topological construction, the “reduced coproduct”, which makes sense for indexed collections of arbitrary Tichonov spaces. When the filter in question is an ultrafilter, we show how the “ultracoproduct” can be obtained from the usual topological ultraproduct via a compactification process in the style of Wallman and Frink. We prove theorems dealing with the topological structure of reduced coproducts (especially ultracoproducts) and show in addition how one may use this construction to gain information about the category of compact Hausdorff spaces.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Banaschewski, B., On categories of algebras equivalent to a variety, Algebra Universalis, vol. 16 (1983), pp. 264267.CrossRefGoogle Scholar
[2]Banaschewski, B., On lattices of continuous functions, Quaestiones Mathematicae, vol. 6 (1983), pp. 112.CrossRefGoogle Scholar
[3]Banaschewski, B., More on compact Hausdorff spaces and finitary duality, Canadian Journal of Mathematics, vol. 36 (1984), pp. 11131118.CrossRefGoogle Scholar
[4]Banaschewski, B., The duality between M-spaces and compact Hausdorff spaces, Mathematische Nachrichten, vol. 75 (1976), pp. 4145.CrossRefGoogle Scholar
[5]Banaschewski, B. and Bruns, G., Categorical characterization of the MacNeille completion, Archiv der Mathematik, vol. 18 (1967), pp. 369377.CrossRefGoogle Scholar
[6]Bankston, P., Ultraproducts in topology, General Topology and Its Applications, vol. 7 (1977), pp 283308.CrossRefGoogle Scholar
[7]Bankston, P., Note on “Ultraproducts in topology”, General Topology and Its Applications, vol. 10 (1979), pp. 231232.CrossRefGoogle Scholar
[8]Bankston, P., Topological reduced products via good ultrafilters, General Topology and Its Applications, vol. 10 (1979), pp. 121137.CrossRefGoogle Scholar
[9]Bankston, P., Some obstacles to duality in topological algebra, Canadian Journal of Mathematics, vol. 34 (1982), pp. 8090.CrossRefGoogle Scholar
[10]Bankston, P., Topological extensions and subspaces of ηα-sets, Fundamenta Mathematicae, vol. 118 (1983), pp. 191199.CrossRefGoogle Scholar
[11]Bankston, P., Obstacles to duality between classes of relational structures, Algebra Universalis, vol. 17 (1983), pp. 8791.CrossRefGoogle Scholar
[12]Bankston, P., Expressive power in first order topology, this Journal, vol. 49 (1984), pp. 478487.Google Scholar
[13]Bankston, P., First order representations of compact Hausdorff spaces, Categorical topology (proceedings of the international conference, Toledo, Ohio, 1983; Bentley, H. L.et al., editors), Heldermann Verlag, Berlin, 1984, pp. 2328.Google Scholar
[14]Bankston, P., On productive classes of function rings, Proceedings of the American Mathematical Society, vol. 87 (1983), pp. 1114.CrossRefGoogle Scholar
[15]Balcar, B., Simon, P. and Vojtáš, P., Refinement properties of and extensions of filters in Boolean algebras, Transactions of the American Mathematical Society, vol. 267 (1981), pp. 265283.CrossRefGoogle Scholar
[16]Chang, C. C. and Keisler, H. J., Model theory, North-Holland, Amsterdam, 1973.Google Scholar
[17]Comfort, W. W. and Negrepontis, S., The theory of ultrafilters, Springer-Verlag, Berlin, 1974.CrossRefGoogle Scholar
[18]van Douwen, E. K. and van Mill, J., Parovičenko's characterization of βω - ω implies CH, Proceedings of the American Mathematical Society, vol. 72 (1978), pp. 539541.Google Scholar
[19]Gillman, L. and Jerison, M., Rings of continuous functions, Van Nostrand, Princeton, New Jersey, 1960.CrossRefGoogle Scholar
[20]Gonshor, H., Enlargements of Boolean algebras and Stone space, Fundamenta Mathematicae, vol. 100 (1978), pp. 3539.CrossRefGoogle Scholar
[21]Grätzer, G., Universal algebra, 2nd ed., Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
[22]Henriksen, M. and Jerison, M., A nonnormal subspace of βN, Bulletin of the American Mathematical Society, vol. 63 (1957), p. 146.Google Scholar
[23]Henson, C. W.et al., First order topology, Dissertationes Mathematicae Rozprawy Matematyczne, vol. 143 (1977).Google Scholar
[24]Henson, C. W., Nonstandard hulls of Banach spaces, Israel Journal of Mathematics, vol. 25 (1976), pp. 108144.CrossRefGoogle Scholar
[25]Herrlich, H. and Strecker, G., Category theory, Allyn and Bacon, Boston, Massachusetts, 1973.Google Scholar
[26]Hewitt, E. and Ross, K. A., Abstract harmonic analysis, Vol. 1, Springer-Verlag, Berlin, 1963.Google Scholar
[27]Kreisel, G. and Krivine, J. L., Elements of mathematical logic, North-Holland, Amsterdam, 1967.Google Scholar
[28]Nagami, K., Dimension theory, Academic Press, New York, 1970.Google Scholar
[29]Pierce, R. S., A note on Boolean algebras, Proceedings of the American Mathematical Society, vol. 9 (1958), pp. 892896.CrossRefGoogle Scholar
[30]Robinson, A., Nonstandard analysis, North-Holland, Amsterdam, 1970.Google Scholar
[31]Rosický, J., Categories of models, Seminarberichte Mathematik-Informatik, Fernuniversität Hagen, vol. 19 (1984), pp. 377413.Google Scholar
[32]Swardson, M. A., A generalization of F-spaces and some topological characterizations of GCH, Transactions of the American Mathematical Society, vol. 279 (1983), pp. 661675.Google Scholar
[33]Walker, R. C., The Stone-Čech compactification, Springer-Verlag, Berlin, 1974.CrossRefGoogle Scholar
[34]Warren, N. M., Stone-Čech compactifications of discrete spaces, Proceedings of the American Mathematical Society, vol. 32 (1972), pp. 599606.Google Scholar
[35]Willard, S., General topology, Addison-Wesley, Reading, Massachusetts, 1970.Google Scholar