No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
The theory of separably closed fields of a fixed characteristic and a fixed imperfectness degree is clearly recursively axiomatizable. Ershov [1] showed that it is complete, and therefore decidable. Later it became clear that this theory also has the prime extension property in a suitable language (cf. [4, Proposition 1]); hence it admits quantifier elimination. The purpose of this work is to give an explicit, primitive recursive procedure for such quantifier elimination in the case of a finite imperfectness degree.