Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:11:38.106Z Has data issue: false hasContentIssue false

Provable wellorderings of formal theories for transfinitely iterated inductive definitions

Published online by Cambridge University Press:  12 March 2014

W. Buchholz
Affiliation:
Mathematisches Institut der Ludwig-Maximilians-Universität, München, Federal Republic of Germany
W. Pohlers
Affiliation:
Mathematisches Institut der Ludwig-Maximilians-Universität, München, Federal Republic of Germany

Extract

By [12] we know that transfinite induction up to ΘεΩN+10 is not provable in IDN, the theory of N-times iterated inductive definitions. In this paper we will show that conversely transfinite induction up to any ordinal less than ΘεΩN+10 is provable in IDNi, the intuitionistic version of IDN, and extend this result to theories for transfinitely iterated inductive definitions.

In [14] Schütte proves the wellordering of his notational systems using predicates is wellordered) with Mκ ≔ {x and 0 ≤ κ ≤ N. Obviously the predicates are definable in IDNi with the defining axioms:

where Prog [Mκ, X] means that X is progressive with respect to Mκ, i.e.

The crucial point in Schütte's wellordering proof is Lemma 19 [14, p. 130] which can be modified to

where TI[Mκ + 1, a] is the scheme of transfinite induction over Mκ + 1 up to a.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

[1]Bridge, J., A simplification of the Bachmann method for generating large countable ordinals, this Journal, vol. 40 (1975), pp. 171185.Google Scholar
[2]Buchholz, W., Normalfunktionen und konstruktive Systeme von Ordinalzahlen, Proof Theory Symposium, Kiel, 1974, Lecture Notes in Mathematics, no. 500, Springer-Verlag, Berlin and New York, 1975, pp. 425.Google Scholar
[3]Buchholz, W. and Schütte, K., Die Beziehungen zwischen den Ordinalzahlsystemen Σ und , Archiv für Mathematische Logik und Grundlagenforschung, vol. 17 (1975), pp. 179190.CrossRefGoogle Scholar
[4]Feferman, S., Formal theories for transfinite iterations of generalized inductive definitions and some substystems of analysis, Intuitionism and proof theory (Kino, , Myhill, and Vesley, , Editors), North-Holland, Amsterdam, 1970, pp. 303326.Google Scholar
[5]Gentzen, G., Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Mathematische Annalen, vol. 119 (1943), pp. 140161.CrossRefGoogle Scholar
[6]Gerber, H., Brouwer's bar theorem and a system of ordinal notations, Intuitionism and proof theory (Kino, , Myhill, and Vesley, , Editors), North-Holland, Amsterdam, 1970, pp. 327338.Google Scholar
[7]Howard, W. A., A system of abstract constructive ordinals, this Journal, vol. 37 (1972), pp. 355374.Google Scholar
[8]Kino, A., On ordinal diagrams, Journal of the Mathematical Society of Japan, vol. 13 (1961), pp. 346356.CrossRefGoogle Scholar
[9]Pfeiffer, H., Ein Bezeichnungssystem für Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 1217.CrossRefGoogle Scholar
[10]Pfeiffer, H., Ein Bezeichnungssystem für Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 13 (1970), pp. 7490.CrossRefGoogle Scholar
[11]Pfeiffer, H., Bezeichnungssysteme für Ordinalzahlen, Communications of the Mathematics Institute of Rijksuniversiteit, Utrecht, 1973.Google Scholar
[12]Pohlers, W., Upper bounds for the provability of transfinite induction in systems with N-times iterated inductive definitions, Proof Theory Symposium, Kiel, 1974, Lecture Notes in Mathematics, no. 500, Springer-Verlag, Berlin and New York, 1975, pp. 271289.Google Scholar
[13]Pohlers, W., Ordinals connected with formal theories of transfinitely iterated inductive definitions, this Journal, (to appear).Google Scholar
[14]Schütte, K., Ein konstruktives System von Ordinalzahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 11 (1968), pp. 126137 and vol. 12 (1969), pp. 3–11.CrossRefGoogle Scholar
[15]Schütte, K., Proof theory, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York, 1977.CrossRefGoogle Scholar
[16]Zucker, J. I., Iterated inductive definitions, trees and ordinals, Metamathematical investigation of intuitionistic arithmetic and analysis (Troelstra, A. S., Editor), Lecture Notes in Mathematics, no. 344, Springer-Verlag, Berlin and New York, 1973, pp. 392453.CrossRefGoogle Scholar