Article contents
ONE DIMENSIONAL GROUPS DEFINABLE IN THE p-ADIC NUMBERS
Part of:
Model theory
Published online by Cambridge University Press: 15 February 2021
Abstract
A complete list of one dimensional groups definable in the p-adic numbers is given, up to a finite index subgroup and a quotient by a finite subgroup.
Keywords
MSC classification
- Type
- Article
- Information
- Copyright
- © The Association for Symbolic Logic 2021
References
Acosta, J. P.,
One dimensional groups definable in the p-adic numbers
, Ph.D. thesis, Universidad de los Andes, Bogotá, Colombia, 2019.Google Scholar
Cluckers, R., Pressburger sets and p-minimal fields, this Journal, vol. 68 (2003), pp. 153–162.Google Scholar
Cluckers, R.,
Analytic p-adic cell decomposition and integrals
.
Transactions of the American Mathematical Society
, vol. 356 (2004), pp. 1489–1499.10.1090/S0002-9947-03-03458-5CrossRefGoogle Scholar
Denef, J.,
p-adic semi-algebraic sets and cell decomposition
.
Journal für die Reine und Angewandte Mathematik
, vol. 369 (1986), pp. 154–166.Google Scholar
Madden, J. J. and Stanton, C. M.,
One-dimensional nash groups
.
Pacific Journal of Mathematics
, vol. 154 (1992), pp. 331–344.10.2140/pjm.1992.154.331CrossRefGoogle Scholar
Montenegro, S., Onshuus, A., and Simon, P., Stabilizers, groups with f-generics in
${{{NTP}}}_2$
and PRC fields.
Journal of the Institute of Mathematics of Jussieu
, vol. 19 (2020), no. 3, pp. 821–852.CrossRefGoogle Scholar
Pillay, A.,
Type-definability, compact Lie groups and o-minimality
.
Journal of Mathematical Logic
, vol. 4 (2004), pp. 147–162.10.1142/S0219061304000346CrossRefGoogle Scholar
Pillay, A. and Onshuus, A.,
Definable groups and compact p-adic Lie groups
.
Journal of the London Mathemaical Society
, vol. 78 (2008), no. 1, pp. 233–247.Google Scholar
Pillay, A. and Yao, N., A note on groups definable in the p-adic field. Archive for Mathematical Logic
, vol. 58 (2019), no. 4, pp. 1029–1034.10.1007/s00153-019-00673-yCrossRefGoogle Scholar
Schneider, P.,
p-Adic Lie Groups
, Springer Science & Business Media, Berlin, Germany, 2011.10.1007/978-3-642-21147-8CrossRefGoogle Scholar
Silverman, J. H.,
The Arithmetic of Elliptic Curves
, Springer, New York, 1986.10.1007/978-1-4757-1920-8CrossRefGoogle Scholar
Silverman, J. H.,
Advanced Topics in the Arithmetic of Elliptic Curves
, Springer, New York, 1994.10.1007/978-1-4612-0851-8CrossRefGoogle Scholar
van den Dries, L.,
Dimension of definable sets, algebraic boundedness and henselian fields
.
Annals of Pure and Applied Logic
, vol. 45 (1989), pp. 189–209.10.1016/0168-0072(89)90061-4CrossRefGoogle Scholar
- 3
- Cited by