Published online by Cambridge University Press: 12 March 2014
The purpose of this paper is to study a formal system PA(Q2) of first order Peano arithmetic, PA, augmented by a Ramsey quantifier Q2 which binds two free variables. The intended meaning of Q2xx′φ(x, x′) is that there exists an infinite set X of natural numbers such that φ(a, a′) holds for all a, a′ Є X such that a ≠ a′. Such an X is called a witness set for Q2xx′φ(x, x′). Our results would not be affected by the addition of further Ramsey quantifiers Q3, Q4, …, Here of course the intended meaning of Qkx1 … xkφ(x1,…xk) is that there exists an infinite set X such that φ(a1…, ak) holds for all k-element subsets {a1, … ak} of X.
Ramsey quantifiers were first introduced in a general model theoretic setting by Magidor and Malitz [13]. The system PA{Q2), or rather, a system essentially equivalent to it, was first defined and studied by Macintyre [12]. Some of Macintyre's results were obtained independently by Morgenstern [15]. The present paper is essentially self-contained, but all of our results have been directly inspired by those of Macintyre [12].
After some preliminaries in §1, we begin in §2 by giving a new completeness proof for PA(Q2). A by-product of our proof is that for every regular uncountable cardinal k, every consistent extension of PA(Q2) has a k-like model in which all classes are definable. (By a class we mean a subset of the universe of the model, every initial segment of which is finite in the sense of the model.)
This research was performed in the fall of 1979 while Simpson was a visiting faculty member at the University of Connecticut. Schmerl and Simpson were partially supported by NSF grants MCS 79-05028 and MCS 77-13935, respectively.