Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:44:14.890Z Has data issue: false hasContentIssue false

On the complexity of models of arithmetic

Published online by Cambridge University Press:  12 March 2014

Kenneth McAloon*
Affiliation:
U.E.R. de Mathematiques, Universite Paris VII, Paris, France
*
Current address: Brooklyn College of C.U.N.Y., Brooklyn, New York, 11210

Abstract

Let P0 be the subsystem of Peano arithmetic obtained by restricting induction to bounded quantifier formulas. Let M be a countable, nonstandard model of P0 whose domain we suppose to be the standard integers. Let T be a recursively enumerable extension of Peano arithmetic all of whose existential consequences are satisfied in the standard model. Then there is an initial segment M′ of M which is a model of T such that the complete diagram of M′ is Turing reducible to the atomic diagram of M. Moreover, neither the addition nor the multiplication of M is recursive.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

[C]Cegielski, P., La théorie élémentaire de la multiplication, Model theory and arithmetic (Berline, , McAloon, , Ressayre, , editors), Lecture Notes in Mathematitcs, vol. 890, Springer-Verlag, Berlin and New York, 1981.CrossRefGoogle Scholar
[C, Mc, W]Cegielski, P., McAloon, K. and Wilmers, G., Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels, Proceedings of Logic Colloquium 1980 (to appear).Google Scholar
[D]Dimttracopoulos, G., Matijasevic's theorem and fragments of arithmetic, Thesis, Manchester, 1980.Google Scholar
[E, K]Ehrenfeucht, A. and Kreisel, G., Strong models for arithmetic, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 14, (1966) pp. 107110.Google Scholar
[F]Friedman, H., Countable models of set theory, Cambridge Summer School in Mathematical Logic (Mathias, and Rogers, , editors), Lecture Notes in Mathematics, vol. 337, Springer-Verlag, Berlin and New York, 1973.Google Scholar
[G]Gaifman, H., A note on models and submodels of arithmetic, Conference in Mathematical Logic-London (Hodges, , editor), Lecture Notes in Mathematics, vol. 255, Springer-Verlag, Berlin and New York, 1970.Google Scholar
[H]Hajek, P., Experimental logics and Π30-theories, this Journal, vol. 42 (1977), pp. 515522.Google Scholar
[H, W]Hirschfeld, J. and Wheeler, W., Forcing, division rings and models of arithmetic, Lecture Notes in Mathematics, vol. 454, Springer-Verlag, Berlin and New York, 1975.Google Scholar
[J]Jeroslow, R., Experimental logics and ⊿20-theories, Journal of Philosophical Logic, vol. 4 (1975), pp. 253267.CrossRefGoogle Scholar
[K]Kirby, L., La méthode des indicatrices, Modèles de l'arithmétique (McAloon, , editor), Astérisque 73, Société Mathématique de France, 1980.Google Scholar
[K, Me, M]Kirby, L., McAloon, K. and Murawski, R., Indicators, recursive saturation and expandability, Fundamenta Mathematicae (to appear).Google Scholar
[K, P]Kirby, L. and Paris, J., Initial segments of models of Peano's axioms, Set theory and hierarchy theory, V. (Lachlan, , Srebrny, , Zarach, , editors), Lecture Notes in Mathematics, vol. 619, Springer-Verlag, Berlin and New York, 1977.CrossRefGoogle Scholar
[L]Lascar, D., Une indicatrice de type Ramsey pour l'arithmétique de Peano et la formule de Paris-Harrington, Modèles de l'arithmétique (McAloon, , editor), Astérisque 73, Société Mathématique de France, 1980.Google Scholar
[Le]Lessan, H., Models of arithmetic, Thesis, Manchester, 1978.Google Scholar
[L, N]Lipshitz, L. and Nadel, M., The additive structure of models of arithmetic, Proceedings of the American Mathematical Society, vol. 68 (1978).CrossRefGoogle Scholar
[Mac]Macintyre, A.Residue fields of models of P, Logic, philosophy and methodology of science, VI,(Cohen, L., Eos, J., Pfeiffer, H. and Podewski, K., editor) (to appear).Google Scholar
[Mc]McAloon, K., >Les rapports entre la méthode des indicatrices et la méthode de Gödel pour obtenir des résultats d'indépendance, Modèles de l'arithmétique (McAloon, , editor), Astérisque 73, Société Mathématique de France, 1980.Google Scholar
[Mc, bis]McAloon, K., Formes combinatoires du théorème d'incomplétude. Séminaire Bourbaki 1977-78, Lecture Notes in Mathematics, Springer-Verlag, Berlin and New York.Google Scholar
[Mc, ter]McAloon, K., Consistency statements and number theories, Colloque International de Logique (Guillaume, , editor), Publications Centre National Recherche Scientifique, no. 249, 1977.Google Scholar
[P]Paris, J., Some independence results for Peano arithmetic, this Journal vol. 43 (1978) pp. 725731.Google Scholar
[P, bis]Paris, J., Some conservation results for models of arithmetic, Model theory and arithmetic (Berline, , McAloon, , Ressayre, editors), Lecture Notes in Mathematics, vol. 890, Springer-Verlag, Berlin and New York, 1981.CrossRefGoogle Scholar
[Ro]Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[P, H]Paris, J. and Harrington, L., A mathematical independence in Peano arithmetic, A handbook of mathematical logic (Barwise, J., editor), North-Holland, Amsterdam, 1978.Google Scholar
[Sim]Simpson, S., Degrees of unsolvability: a survey of results, Handbook of mathematical logic, (Barwise, , editor), North-Holland, Amsterdam, 1978.Google Scholar
[T]Tennenbaum, S., Non-archimedean models for arithmetic, Notices of the American Mathematical Society, vol. 6 (1959), p. 207.Google Scholar