No CrossRef data available.
Article contents
THE NUMBER OF ATOMIC MODELS OF UNCOUNTABLE THEORIES
Published online by Cambridge University Press: 08 February 2018
Abstract
We show there exists a complete theory in a language of size continuum possessing a unique atomic model which is not constructible. We also show it is consistent with $ZFC + {\aleph _1} < {2^{{\aleph _0}}}$ that there is a complete theory in a language of size
${\aleph _1}$ possessing a unique atomic model which is not constructible. Finally we show it is consistent with
$ZFC + {\aleph _1} < {2^{{\aleph _0}}}$ that for every complete theory T in a language of size
${\aleph _1}$, if T has uncountable atomic models but no constructible models, then T has
${2^{{\aleph _1}}}$ atomic models of size
${\aleph _1}$.
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2018
References
REFERENCES
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180501081843995-0486:S0022481217000251:S0022481217000251_inline7.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180501081843995-0486:S0022481217000251:S0022481217000251_inline8.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180501081843995-0486:S0022481217000251:S0022481217000251_inline9.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180501081843995-0486:S0022481217000251:S0022481217000251_inline10.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20180501081843995-0486:S0022481217000251:S0022481217000251_inline11.gif?pub-status=live)