Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T11:43:13.455Z Has data issue: false hasContentIssue false

A note on subsystems of open induction

Published online by Cambridge University Press:  12 March 2014

Shahram Mohsenipour*
Affiliation:
Institute for Studies in Theoretical Physics and Mathematics, P.O. BOX 19395-5746, Tehran, Iran. E-mail: [email protected]

Abstract

We completely characterize the logical hierarchy of subsystems of open induction introduced by Boughattas [1].

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Boughattas, Sedki, L'arithmétique ouverte et ses modèles non-standards, this Journal, vol. 56 (1991), no. 2, pp. 700714.Google Scholar
[2]Boughattas, Sedki, L'induction ouverte dans les anneaux discrets ordonnés et normaux n'est pas finiment axiomatisable, Journal of the London Mathematical Society. Second Series, vol. 53 (1996), no. 3, pp. 455463.CrossRefGoogle Scholar
[3]Jacobson, Nathan, Basic algebra, I, second ed., W. H. Freeman and Company, New York, 1985.Google Scholar
[4]Malle, Gunter and Matzat, B. Heinrich, Inverse Galois theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
[5]Shepherdson, J. C., A non-standard model for a free variable fragment of number theory, Bulletin de l'Académie Polonaise des Sciences, vol. 12 (1964), pp. 7986.Google Scholar