Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T10:40:18.830Z Has data issue: false hasContentIssue false

A NEW MINIMAL NON-σ-SCATTERED LINEAR ORDER

Published online by Cambridge University Press:  16 July 2019

HOSSEIN LAMEI RAMANDI*
Affiliation:
DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, CANADAE-mail: [email protected]

Abstract

We will show it is consistent with GCH that there is a minimal non-σ-scattered linear order which does not contain any real or Aronszajn type. In particular the assumption PFA+ in the main result of [5] is necessary, and there are other obstructions than real and Aronszajn types to the sharpness of Laver’s theorem in [8].

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, U. and Shelah, S., Isomorphism types of Aronszajn trees. Israel Journal of Mathematics, vol. 50 (1985), no. 1–2, pp. 75113.CrossRefGoogle Scholar
Baumgartner, J. E., All ${\aleph _1}$-dense sets of reals can be isomorphic. Fundamenta Mathematicae, vol. 79 (1973), no. 2, pp. 101106.CrossRefGoogle Scholar
Baumgartner, J. E., A new class of order types. Annals of Mathematical Logic, vol. 9 (1976), no. 3, pp. 187222.CrossRefGoogle Scholar
Fraïssé, R., Sur la comparaison des types d’ordres. Comptes rendus de l’Académie des Sciences, vol. 226 (1948), pp. 13301331.Google Scholar
Ishiu, T. and Moore, J. T., Minimality of non σ-scattered orders. Fundamenta Mathematicae, vol. 205 (2009), no. 1, pp. 2944.CrossRefGoogle Scholar
Lamei Ramandi, H., A minimal Kurepa tree with respect to club embeddings. Fundamenta Mathematicae, vol. 245 (2019), no. 3, pp. 293304.CrossRefGoogle Scholar
Lamei Ramandi, H. and Tatch Moore, J., There may be no minimal non-σ-scattered linear orders. Mathematical Research Letters, vol. 25 (2018), no. 6, pp. 19571975.CrossRefGoogle Scholar
Laver, R., On Fraïssé’s order type conjecture. Annals of Mathematics (2), vol. 93 (1971), pp. 89111.CrossRefGoogle Scholar
Martinez-Ranero, C., Well-quasi-ordering Aronszajn lines. Fundamenta Mathematicae, vol. 213 (2011), no. 3, pp. 197211.CrossRefGoogle Scholar
Moore, J. T., ω1 and –ω1 may be the only minimal uncountable order types. Michigan Mathematical Journal, vol. 55 (2007), no. 2, pp. 437457.CrossRefGoogle Scholar
Shelah, S., Proper and Improper Forcing, second ed., Springer-Verlag, Berlin, 1998.CrossRefGoogle Scholar