Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T16:52:49.313Z Has data issue: false hasContentIssue false

Local-global properties of positive primitive formulas in the theory of spaces of orderings

Published online by Cambridge University Press:  12 March 2014

M. Marshall*
Affiliation:
University of Saskatchewan, Department of Mathematics & Statistics, Saskatoon, Sk, S7N 5E6, Canada, E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Andradas, C., Bröcker, L., and Ruiz, J., Constructible Sets in Real Geometry, Ergebnisse der Mathematik, vol. 33, Springer, 1996.CrossRefGoogle Scholar
[2]Astier, V. and Tressl, M., Axiomatization of local-global principles for pp formulas in spaces of orderings, 2004, preprint.CrossRefGoogle Scholar
[3]Bochnak, J., Coste, M., and Roy, M.-F., Real Algebraic Geometry, Ergebnisse der Mathematik, vol. 36, Springer, 1998.CrossRefGoogle Scholar
[4]Bröcker, L., Spaces of orderings and semi-algebraic sets, Quadratic and Hermitian Forms, Conference Proceedings of the Canadian Mathematical Society, 1984, pp. 231248.Google Scholar
[5[Craven, T., Witt rings and orderings on skew fields, Journal of Algebra, vol. 77 (1982), pp. 7496.CrossRefGoogle Scholar
[6]Craven, T., Orderings, valuations and Hermitian forms over skewfields, Proceedings of the Symposia on Pure Mathematics, vol. 58, 1995, pp. 149158.Google Scholar
[7]Dickmann, M., Marshall, M., and Miraglia, F., Lattice ordered reduced special groups, Annals of Pure and Applied Logic, vol. 132 (2005), pp. 2749.CrossRefGoogle Scholar
[8]Dickmann, M. and Miraglia, F., Special groups: Boolean-theoretic methods in the theory of quadratic forms, Memoirs of the AMS, vol. 145 (2000), no. 689.CrossRefGoogle Scholar
[9]Gładki, P. and Marshall, M., The pp conjecture for spaces of orderings of rational conics, to appear.Google Scholar
[10]Kalhoff, F., Orderings, algebras and projective planes, Expositiones Mathematicae, vol. 13 (1995), pp. 338.Google Scholar
[11]Knebusch, M., On the local theory of signatures and reduced quadratic forms, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 51 (1981), pp. 141195.CrossRefGoogle Scholar
[12]Lam, T.-Y., Orderings, valuations and quadratic forms, Regional Conference Series in Mathematics, vol. 52, American Mathematical Society, 1983.CrossRefGoogle Scholar
[13]Leung, K. H., Marshall, M., and Zhang, Y., The real spectrum of a noncommutative ring, Journal of Algebra, vol. 98 (1997), pp. 412427.CrossRefGoogle Scholar
[14]Marshall, M., Spaces of orderings IV, Canadian Journal of Mathematics, vol. 32 (1980), pp. 603627.CrossRefGoogle Scholar
[15]Marshall, M., Spaces of orderings: Systems of quadratic forms, local structure and saturation, Communications in Algebra, vol. 12 (1984), pp. 723743.CrossRefGoogle Scholar
[16]Marshall, M., Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics, vol. 1636, Springer, 1996.CrossRefGoogle Scholar
[17]Marshall, M., *-orderings on a ring with involution, Communications in Algebra, vol. 28 (2000), pp. 11571173.CrossRefGoogle Scholar
[18]Marshall, M., Open questions in the theory of spaces of orderings, this Journal, vol. 67 (2002), pp. 341352.Google Scholar
[19]Marshall, M., A note concerning the curve x2 + y2 = 3, unpublished note, 2005.Google Scholar
[20]Walter, L., Quadratic forms, orderings, and quaternion algebras over rings with many units, Master Thesis, University of Saskatchewan, 1988.Google Scholar