Article contents
Infinitary compactness without strong inaccessibility1
Published online by Cambridge University Press: 12 March 2014
Extract
In this article, unpublished methods of Solovay and Kunen are applied to describe conditions under which an uncountable regular κ can satisfy weak (κ, λ)-compactness (see 1.1(3) below), yet lie below 2μ for some μ < κ. The argumentation is in informal ZFC, and general set-theoretic notation is standard. The lower-case Greek letters κ, λ, μ, ν are reserved for cardinals in the sense of some transitive or inner model of a reasonable set theory, φ, Ψ, θ, are (arithmetizations of) formulas in some extension of the first-order language of set theory, and other lower-case Greek letters except Є are metavariables for arbitrary ordinals. If M is transitive, M ⊨ φ abbreviates 〈M, Є 〉 ⊨ φ. [2], [3], [9] and [1] provide more information about large-cardinal theory for those who wish it.
1.1. Definitions. (1) κ is inaccessible iff κ is regular and ℵκ = κ; strongly inaccessible iff κ is regular and ℶκ = κ, i.e., λ < κ for all λ < κ; weakly inaccessible iff κ is inaccessible but not strongly inaccessible.
(2) L κλ is the infinitary language with conjunctions and disjunctions of length < κ and quantification over sequences of length < λ, and PL κ the prepositional language with κ letters and conjunctions and disjunctions of length < κ.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1976
Footnotes
This is a condensed version of the second part of my thesis (Wisconsin, 1971), written under the supervision of Professor Kenneth Kunen. I would like to express again my gratitude for his friendliness, patience, infallibility and lack of possessiveness with good ideas. The most substantial one of the article is his, not mine.
References
REFERENCES
- 2
- Cited by