Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T21:52:45.704Z Has data issue: false hasContentIssue false

Independence, randomness and the axiom of choice

Published online by Cambridge University Press:  12 March 2014

Michiel van Lambalgen*
Affiliation:
Department of Mathematics, University of Amsterdam, Amsterdam, The Netherlands, E-mail: [email protected]

Abstract

We investigate various ways of introducing axioms for randomness in set theory. The results show that these axioms, when added to ZF, imply the failure of AC. But the axiom of extensionality plays an essential role in the derivation, and a deeper analysis may ultimately show that randomness is incompatible with extensionality.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beeson, M. J. [1985], Foundations of constructive mathematics, Springer-Verlag, New York.CrossRefGoogle Scholar
van Benthem, J. F. A. K. [1990], Inference, methodology and Semantics, Festschrift for V. A. Smirnov (Bystrov, P., editor), Akademiya Nauk USSR, Moscow.Google Scholar
Benacerraf, P. and Putnam, H. (editors) [1985], Philosophy of mathematics: selected readings (second edition), Cambridge University Press, Cambridge.Google Scholar
Bernays, P. [1985], On Platonism in mathematics, Philosophy of mathematics: selected readings, second edition (Benacerraf, P. and Putnam, H. editors), Cambridge University Press, Cambridge, 1985.Google Scholar
Boolos, G. [1985], The iterative concept of set, Philosophy of mathematics: selected readings, second edition (Benacerraf, P. and Putnam, H. editors), Cambridge University Press, Cambridge, 1985.Google Scholar
Borel, E. [1909], Les probabilitiés dénombrables et leurs applications arithmétiques, reprinted in Leçons sur la théorie des fonctions, Gauthier-Villars, Paris (1914).Google Scholar
Cohn, P. M. [1981], Universal algebra, Reidel, Dordrecht.CrossRefGoogle Scholar
Davies, R. O. [1963], Covering the plane with denumerably many curves, Journal of the London Mathematical Society, vol. 38, pp. 433438.CrossRefGoogle Scholar
Diaconescu, R. [1975], Axiom of choice and complementation, Proceedings of the American Mathematical Society, vol. 51, pp. 176178.CrossRefGoogle Scholar
Friedman, H. [1973], The consistency of classical set theory relative to a set theory with intuitionistic logic, this Journal, vol. 38, pp. 315319.Google Scholar
Freiling, C. [1986], Axioms of symmetry: throwing darts at the real number line, this Journal, vol. 51, pp. 190200.Google Scholar
Gödel, K. [1990], Collected works, vol. II (Feferman, S.et al., editors), Oxford University Press, London, New York.Google Scholar
Goodman, N. D. and Myhill, J. [1978], Choice implies excluded middle, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 24, p. 461.CrossRefGoogle Scholar
Slaman, T. and Tugué, T. (editors) [1989], Mathematical logic and applications, Lecture Notes in Mathematics, vol. 1388, Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kaufmann, M. [1983], Set theory with a filter quantifier, this Journal, vol. 48, pp. 263287.Google Scholar
Kunen, K. [1980], Set theory, North-Holland, Amsterdam.Google Scholar
Kreisel, G. [1969], Two notes on the foundations of set theory, Dialéctica, vol. 23, pp. 93114.CrossRefGoogle Scholar
Kruse, A. H. [ 1967], Some notions of random sequence and their set theoretic foundations, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 13, pp. 299322.CrossRefGoogle Scholar
Maddy, P. [1988], Believing the axioms I, this Journal, vol. 53, 481511.Google Scholar
van Lambalgen, M. [1990], The axiomatization of randomness, this Journal, vol. 55, pp. 11431167.Google Scholar
van Lambalgen, M., [1991], Natural deduction for generalized quantifiers, Quantification in the Netherlands (Does, van der and van Eyck, , editors), Institute for Logic, Language and Information, University of Amsterdam, Amsterdam.Google Scholar
Oxtoby, J. C. [1980], Measure and Category, Springer-Verlag, Berlin and New York.CrossRefGoogle Scholar
Oxtoby, J. C. and Kakutani, S. [1950], Construction of a non-separable invariant extension of the Lebesgue measure space, Annals of Mathematics, vol. 52, pp. 580590.Google Scholar
Simms, J. [1989], Traditional Cavalieri principles applied to the modern notion of area, Journal of Philosophical Logic, vol. 18, pp. 275314.CrossRefGoogle Scholar
Shelah, S. [1984], Can you take Solovay's inaccessible away?, Israel Journal of Mathematics, vol. 48, pp. 147.CrossRefGoogle Scholar
Solovay, R. M. [1970], A model of set theory in which every set of reals is Lebesgue measurable, Annals of Mathematics, vol. 92, pp. 156.CrossRefGoogle Scholar
Stern, J. [1985], Regularity properties of definable sets of reals, Annals of Mathematical Logic, vol. 29, pp. 289324.Google Scholar
Troelstra, A. S. [1977], Choice sequences, Oxford University Press, London and New York.Google Scholar
Troelstra, A. S. and van Dalen, D. [1988], Constructivism in mathematics, vol. II, North-Holland, Amsterdam.Google Scholar
van Aken, J. [1986], Axioms for the set theoretic hierarchy, this Journal, vol. 51, pp. 9921004.Google Scholar