Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:36:50.419Z Has data issue: false hasContentIssue false

Incompleteness results in Kripke semantics

Published online by Cambridge University Press:  12 March 2014

Silvio Ghilardi*
Affiliation:
Dipartimento di Matematica, Università Degli Studi di Milano, 20133 Milano, Italy

Abstract

By means of models in toposes of C-sets (where C is a small category), necessary conditions are found for the minimum quantified extension of a propositional (intermediate, modal) logic to be complete with respect to Kripke semantics; in particular, many well-known systems turn out to be incomplete.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bell, J. L., Toposes and local set theories: an introduction, Clarendon Press, Oxford, 1988.Google Scholar
[2]Bull, R. A., That all normal extensions of S4.3 have the finite model property, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 609616.CrossRefGoogle Scholar
[3]Corsi, G., The quantified modal logics of 〈Q, <〉 and of 〈Q, ≤〉 and some of their extensions, preprint, 1990.Google Scholar
[4]Corsi, G. and Ghilardi, S., Directed frames, Archive for Mathematical Logic, vol. 29 (1989), pp. 5367.CrossRefGoogle Scholar
[5]Fine, K., An ascending chain of S4 logics, Theoria, vol. 40 (1974), pp. 110116.CrossRefGoogle Scholar
[6]Gabbay, D. M., Semantical investigations in Heyting's intuitionistic logic, Reidel, Dordrecht, 1976.Google Scholar
[7]Gabby, D. M. and DeJongh, D., A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property, this Journal, vol. 39 (1974), pp. 6778.Google Scholar
[8]Ghilardi, S., Presheaf semantics and independence results for some non-classical first-order logics, Archive for Mathematical Logic, vol. 29 (1989), pp. 125136.CrossRefGoogle Scholar
[9]Ghilardi, S., Modalità e categorie, Tesi di Dottorato in Matematica, Università degli Studi di Milano, Milano, 1990.Google Scholar
[10]Ghilardi, S. and Meloni, G. C., Modal and tense predicate logic: models in presheaves and categorical conceptualization, Categorical algebra and its applications, proceedings, Louvain-la-Neuve, 1987 (Borceux, F., editor), Lecture Notes in Mathematics, vol. 1348, Springer-Verlag, Berlin, 1988, pp. 130142.Google Scholar
[11]Ghilardi, S. and Meloni, G. C., Philosophical and mathematical investigations in first order modal logic, Problemi fondazionali in teoria del significato (Usberti, G., editor), Olsckhi, Firenze (to appear).Google Scholar
[12]Makkai, M. and Reyes, G. E., First order categorical logic, Lecture Notes in Mathematics, vol. 611, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
[13]Maksimova, L. L., Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras, Algebra i Logika, vol. 16(1977), pp. 643681; English translation, Algebra and Logic, vol. 16 (1977), pp. 427–455.Google Scholar
[14]Minari, P. L., Kripke definable ordinals, Atti degli incontri di logica matematica, Vol. 2, Scuola di Specializzazione in Logica Matematica, Università degli Studi di Siena, Siena, 1984, pp. 185188.Google Scholar
[15]Ono, H., Model extension theorem and Craig's interpolation theorem for intermediate predicate logics, Reports on Mathematical Logic, vol. 15 (1983), pp. 4158.Google Scholar
[16]Šehtman, V. B. and Skvorcov, D. P., Semantics of nonclassical first order predicate logics, Proceedings of “Heyting 88” (to appear).Google Scholar