Article contents
Hierarchies of forcing axioms I
Published online by Cambridge University Press: 12 March 2014
Abstract
We prove new upper bound theorems on the consistency strengths of SPFA(θ), SPFA(θ-linked) and SPFA(θ+ -cc). Our results are in terms of (θ, Γ)-subcompactness, which is a new large cardinal notion that combines the ideas behind subcompactness and Γ-indescribability. Our upper bound for SPFA(ϲ-linked) has a corresponding lower bound, which is due to Neeman and appears in his follow-up to this paper. As a corollary, SPFA(ϲ-linked) and PFA(ϲ-linked) are each equiconsistent with the existence of a -indescribable cardinal. Our upper bound for SPFA(ϲ-c.c) is a -indescribable cardinal, which is consistent with V = L. Our upper bound for SPFA(ϲ+-linked) is a cardinals κ that is (κ+,)-subcompact, which is strictly weaker than κ+-supercompact. The axiom MM(ϲ) is a consequence of SPFA(ϲ+-linked) by a slight refinement of a theorem of Shelah. Our upper bound for SPFA(ϲ++-c.c.) is a cardinal κ that is (κ+, )-subcompact, which is also strictly weaker than κ+-supercompact.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2008
References
REFERENCES
- 7
- Cited by