No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
We reprove Gitik's theorem that if the GCH holds and o(κ) = κ + 1 then there is a generic extension in which κ is still measurable and there is a closed unbounded subset C of κ such that every ν ∈ C is inaccessible in the ground model.
Unlike the forcing used by Gitik, the iterated forcing ℛλ+1 used in this paper has the property that if λ is a cardinal less then κ then ℛλ+1 can be factored in V as ℛκ+1 = ℛλ+1 × ℛλ+1,κ where ∣ℛλ+1∣ ≤ λ+ and ℛλ+1,κ does not add any new subsets of λ.