Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T12:35:37.763Z Has data issue: false hasContentIssue false

Functional completeness and canonical forms in many-valued logics1

Published online by Cambridge University Press:  12 March 2014

William H. Jobe*
Affiliation:
University of Tulsa and University of Kansas

Extract

This paper examines the questions of functional completeness and canonical completeness in many-valued logics, offering proofs for several theorems on these topics.

A skeletal description of the domain for these theorems is as follows. We are concerned with a proper logic L, containing a denumerably infinite class of propositional symbols, P, Q, R, …, a finite set of unary operations, U1, U2,…, Ub, and a finite set of binary operations, B1, B2, …, Bc. Well-formed formulas in L are recursively defined by the conventional set of rules. With L there is associated an integer, M ≧ 2, and the integers m, where (1 ≦m≦M), are the truth values of L.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

The author gratefully acknowledges the aid of Walter E. Stuermann, Professor of Philosophy at the University of Tulsa, in bringing this paper into its published form.

References

[1] Birkhoff, G. and Maclane, S., A survey of modern algebra, New York (Macmillan), 1957.Google Scholar
[2] Łukasiewicz, Jan, Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls, Comtes rendus des séances de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 23 (1930), pp. 5777.Google Scholar
[3] Martin, N., A note on Sheffer functions in N-valued logic, Methodos, Vol. 3 (1951), p. 241.Google Scholar
[4] Rosser, J. B. and Turquette, A. R., Many-valued logics, Amsterdam (North-Holland), 1955.Google Scholar
[5] Słupecki, Jerzy, Der volle dreiwertige Aussagen-kalkül, Comtes rendus des séances de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 29 (1936), pp. 911.Google Scholar
[6] Słupecki, Jerzy, Kryterium pelnosci wielowartosciowych systemow logiki zdan (A criterion of fullness of many-valued systems of propositional logic), Comtes rendus des séances de la Société des Sciences et des Lettres de Varsovie, classe III, Vol. 32 (1939), pp. 102109.Google Scholar