Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-17T14:03:58.926Z Has data issue: false hasContentIssue false

FORCING AXIOMS, APPROACHABILITY, AND STATIONARY SET REFLECTION

Part of: Set theory

Published online by Cambridge University Press:  20 October 2021

SEAN D. COX*
Affiliation:
DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS VIRGINIA COMMONWEALTH UNIVERSITY 1015 FLOYD AVENUE, RICHMOND, VA23284, USAE-mail: [email protected]

Abstract

We prove a variety of theorems about stationary set reflection and concepts related to internal approachability. We prove that an implication of Fuchino–Usuba relating stationary reflection to a version of Strong Chang’s Conjecture cannot be reversed; strengthen and simplify some results of Krueger about forcing axioms and approachability; and prove that some other related results of Krueger are sharp. We also adapt some ideas of Woodin to simplify and unify many arguments in the literature involving preservation of forcing axioms.

Type
Article
Copyright
© The Association for Symbolic Logic 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asperó, D., Krueger, J., and Yoshinobu, Y., Dense non-reflection for stationary collections of countable sets . Annals of Pure and Applied Logic, vol. 161 (2009), no. 1, 94108.CrossRefGoogle Scholar
Beaudoin, R. E., The proper forcing axiom and stationary set reflection . Pacific Journal of Mathematics, vol. 149 (1991), no. 1, 1324.CrossRefGoogle Scholar
Cox, S. D., PFA and ideals on ${\omega}_2$ whose associated forcings are proper . Notre Dame Journal of Formal Logic , vol. 53 (2012), no. 3, 397412.CrossRefGoogle Scholar
Cox, S. D., The diagonal reflection principle . Proceedings of the American Mathematical Society, vol. 140 (2012), no. 8, 28932902.CrossRefGoogle Scholar
Cox, S. D., Chang’s conjecture and semiproperness of nonreasonable posets . Monatshefte für Mathematik, vol. 187 (2018), no. 4, 617633.10.1007/s00605-018-1182-yCrossRefGoogle Scholar
Cox, S. and Krueger, J., Indestructible guessing models and the continuum . Fundamenta Mathematicae, vol. 239 (2017), no. 3, 221258.10.4064/fm340-1-2017CrossRefGoogle Scholar
Doebler, P. and Schindler, R., π 2 consequences of BMM plus ${\mathrm{NS}}_{\omega_1}$ is precipitous and the semiproperness of stationary set preserving forcings . Mathematical Research Letters, vol. 16 (2009), no. 5, 797815.10.4310/MRL.2009.v16.n5.a4CrossRefGoogle Scholar
Feng, Q. and Jech, T., Projective stationary sets and a strong reflection principle . Journal of the London Mathematical Society (2), vol. 58 (1998), no. 2, 271283.10.1112/S0024610798006462CrossRefGoogle Scholar
Foreman, M., Ideals and generic elementary embeddings , Handbook of Set Theory (Foreman, M. and Kanamori, A., editors), Springer, Dordrecht, 2010, pp. 8851147.10.1007/978-1-4020-5764-9_14CrossRefGoogle Scholar
Foreman, M. and Magidor, M., A very weak square principle, this Journal, vol. 62 (1997), no. 1, 175196.Google Scholar
Foreman, M. and Magidor, M., Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on $P_{\varkappa} (\lambda )$ . Acta Mathematica, vol. 186 (2001), no. 2, 271300.CrossRefGoogle Scholar
Foreman, M., Magidor, M., and Shelah, S., Martin’s maximum, saturated ideals, and nonregular ultrafilters. I . Annals of Mathematics (2), vol. 127 (1988), no. 1, 147.10.2307/1971415CrossRefGoogle Scholar
Foreman, M. and Todorcevic, S., A new Löwenheim–Skolem theorem . Transactions of the American Mathematical Society , vol. 357 (2005), no. 5, 16931715.10.1090/S0002-9947-04-03445-2CrossRefGoogle Scholar
Friedman, S.-D. and Krueger, J., Thin stationary sets and disjoint club sequences . Transactions of the American Mathematical Society, vol. 359 (2007), no. 5, 24072420.10.1090/S0002-9947-06-04163-8CrossRefGoogle Scholar
Fuchino, S. and Usuba, T., A reflection principle formulated in terms of games . RIMS Kokyuroku, vol. 1895 (2014), 3747.Google Scholar
Gitik, M., Nonsplitting subset of Pk(k +), this Journal, vol. 50 (1985), no. 4, 881894 (1986).Google Scholar
Hamkins, J. D. and Seabold, D. E., Well-founded Boolean ultrapowers as large cardinal embeddings, preprint, 2012, arXiv:1206.6075 Google Scholar
Hugh Woodin, W., The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, second revised edition, de Gruyter Series in Logic and Its Applications, vol. 1, Walter de Gruyter, Berlin, 2010.CrossRefGoogle Scholar
Jech, T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003.Google Scholar
König, B. and Yoshinobu, Y., Fragments of martin’s maximum in generic extensions. Mathematical logic Quarterly, vol. 50 (2004), no. 3, 297302.CrossRefGoogle Scholar
Krueger, J., Internally club and approachable . Advances in Mathematics, vol. 213 (2007), no. 2, 734740.10.1016/j.aim.2007.01.007CrossRefGoogle Scholar
Krueger, J., Internal approachability and reflection . Journal of Mathematical Logic, vol. 8 (2008), no. 1, 2339.CrossRefGoogle Scholar
Krueger, J., Some applications of mixed support iterations . Annals of Pure and Applied Logic, vol. 158 (2009), nos. 1–2, 4057.10.1016/j.apal.2008.09.024CrossRefGoogle Scholar
Larson, P., Separating stationary reflection principles, this Journal, vol. 65 (2000), no. 1, 247258.Google Scholar
Mitchell, W. J., $I[\omega _2]$ can be the nonstationary ideal on $\mathrm{Cof}(\omega _1)$ . Transactions of the American Mathematical Society, vol. 361 (2009), no. 2, 561601.10.1090/S0002-9947-08-04664-3CrossRefGoogle Scholar
Neeman, I., Forcing with sequences of models of two types . Notre Dame Journal of Formal Logic, vol. 55 (2014), no. 2, 265298.CrossRefGoogle Scholar
Sakai, H., Semistationary and stationary reflection, this Journal, vol. 73 (2008), no. 1, 181192.Google Scholar
Shelah, S., Proper and Improper Forcing, second ed., Perspectives in Mathematical Logic, Springer, Berlin, 1998.10.1007/978-3-662-12831-2CrossRefGoogle Scholar
Todorčević, S., A note on the proper forcing axiom , Axiomatic Set Theory (Baumgartner, J. E., Martin, D. A., and Shelah, S., editors), Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 209218.10.1090/conm/031/763902CrossRefGoogle Scholar
Todorčević, S., Conjectures of Rado and Chang and cardinal arithmetic , Finite and Infinite Combinatorics in Sets and Logic (Sauer, N. W., Woodrow, R. E., and Sands, B., editor), NATO ASI Series, vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, pp. 385398.10.1007/978-94-011-2080-7_26CrossRefGoogle Scholar
Veličković, B., Forcing axioms and stationary sets . Advances in Mathematics , vol. 94 (1992), no. 2, 256284.CrossRefGoogle Scholar
Viale, M., Guessing models and generalized Laver diamond . Annals of Pure and Applied Logic , vol. 163 (2012), no. 11, 16601678.10.1016/j.apal.2011.12.015CrossRefGoogle Scholar
Viale, M., Category forcings, ${\mathrm{MM}}^{+++}$ , and generic absoluteness for the theory of strong forcing axioms . Journal of the American Mathematical Society , vol. 29 (2016), no. 3, 675728.CrossRefGoogle Scholar
Viale, M. and Weiß, C., On the consistency strength of the proper forcing axiom . Advances in Mathematics , vol. 228 (2011), no. 5, 26722687.10.1016/j.aim.2011.07.016CrossRefGoogle Scholar
Yoshinobu, Y., Operations, climbability and the proper forcing axiom . Annals of Pure and Applied Logic , vol. 164 (2013), nos. 7–8, 749762.10.1016/j.apal.2012.11.010CrossRefGoogle Scholar