Published online by Cambridge University Press: 12 March 2014
In this paper we introduce the notion of a first order topological structure, and consider various possible conditions on the complexity of the definable sets in such a structure, drawing several consequences thereof.
Our aim is to develop, for a restricted class of unstable theories, results analogous to those for stable theories. The “material basis” for such an endeavor is the analogy between the field of real numbers and the field of complex numbers, the former being a “nicely behaved” unstable structure and the latter the archetypal stable structure. In this sense we try here to situate our work on o-minimal structures [PS] in a general topological context. Note, however, that the p-adic numbers, and structures definable therein, will also fit into our analysis.
In the remainder of this section we discuss several ways of studying topological structures model-theoretically. Eventually we fix on the notion of a structure in which the topology is “explicitly definable” in the sense of Flum and Ziegler [FZ]. In §2 we introduce the hypothesis that every definable set is a Boolean combination of definable open sets. In §3 we introduce a “dimension rank” on (closed) definable sets. In §4 we consider structures on which this rank is defined, and for which also every definable set has a finite number of definably connected definable components. We show that prime models over sets exist under such conditions.
Research partially supported by NSF grant DMS84-01713.