Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T15:43:40.936Z Has data issue: false hasContentIssue false

Expressing infinity without foundation

Published online by Cambridge University Press:  12 March 2014

Franco Parlamento
Affiliation:
Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy
Alberto Policriti
Affiliation:
Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

Abstract

The axiom of infinity can be expressed by stating the existence of sets satisfying a formula which involves restricted universal quantifiers only, even if the axiom of foundation is not assumed.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Acz88]Aczel, P., Non-well-founded sets, CSLI Lecture Notes, vol. 14, Center for the Study of Language and Information, Stanford University, Stanford, California, 1988.Google Scholar
[CFO90]Cantone, D., Ferro, A., and Omodeo, E., Computable set theory, Oxford University Press, Oxford, 1990.Google Scholar
[Lev79]Levy, A., Basic set theory, Springer-Verlag, Berlin, 1979.CrossRefGoogle Scholar
[PP88]Parlamento, F. and Policriti, A., The logically simplest form of the infinity axiom, Proceedings of the American Mathematical Society, vol. 103 (1988), pp. 274276.CrossRefGoogle Scholar
[PP90a]Parlamento, F. and Policriti, A., The decision problem for restricted universal quantification in set theory and the axiom of foundation, Technical Report, Dipartimento di Matematica e Informatica, Università di Udine, Udine, 1990.Google Scholar
[PP90b]Parlamento, F. and Policriti, A., Note on “The logically simplest form of the infinity axiom”, Proceedings of the American Mathematical Society, vol. 108 (1990), pp. 285286.Google Scholar