Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T22:52:12.641Z Has data issue: false hasContentIssue false

Équations génériques dans un groupe stable nilpotent

Published online by Cambridge University Press:  12 March 2014

Khaled Jaber*
Affiliation:
Institut Girard Desargues, Upres-A5028 Mathématiques, Université Claude Bernard Lyon1, 43, Boulevard Du 11 Novembre 1918, 69622 Villeurbanne Cedex, France E-mail: [email protected]

Abstract

We prove that in a nilpotent-by-finite stable group an equation that holds generically holds everywhere. Combining this result with results of Wagner and Bryant, we conclude that a soluble-by-finite stable group of generic exponent n has exponent n.

Résumé

Résumé

On prouve que dans un groupe stable, nilpotent par fini, une équation générìquement satisfaite y est partout satisfaite. En combinant ce résultat avec des résultats de Wagner et Bryant, on déduit qu'un groupe stable résoluble-par-fini d'exposant généríque n est d'exposant n.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Borovik, Alexandre V. and Nesin, Ali, Groups of Finite Morley Rank, Oxford University Press, 1994.CrossRefGoogle Scholar
[2] Bryant, Roger M. and Hartley, B., Periodic locally soluble groups with the minimal condition on centralisers, Journal of Algebra, vol. 61 (1979), pp. 328334.CrossRefGoogle Scholar
[3] Corredor, L.J., Bad groups of finite Morley rank, this Journal, vol. 54 (1989), pp. 768773.Google Scholar
[4] Khukhro, Evgenii I., Nilpotent groups and their automorphisms, Walter de Gruyter, Berlin, New York, 1993.CrossRefGoogle Scholar
[5] Poizat, Bruno, Groupes Stables, Nur Al-Mantiq wal-Ma'rifah, Villeurbanne, France, 1987.Google Scholar
[6] Poizat, Bruno, Équations génériques, Proceedings of the Eighth Easter Conference on model theory (Berlin) (Dahn, B. and Wolter, H., editors), Humboldt-Universität, 1990, pp. 131138.Google Scholar
[7] Poizat, Bruno and Wagner, Frank, Sous-groupes périodiques d'un groupe stable, this Journal, vol. 58 (1993), no. 2, pp. 385400.Google Scholar
[8] Wagner, Frank, Stable Groups, Cambridge University Press, 1997.CrossRefGoogle Scholar
[9] Wagner, Frank O., À propos d'équations génériques, this Journal, vol. 57 (1992), no. 2, pp. 548554.Google Scholar