Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
1965.
The Foundations of Intuitionistic Mathematics.
Vol. 39,
Issue. ,
p.
187.
1966.
Intuitionism An Introduction.
Vol. 41,
Issue. ,
p.
127.
Aczel, P.H.G.
1968.
Contributions to Mathematical Logic - Proceedings of the Logic Colloquium, Hannover 1966.
Vol. 50,
Issue. ,
p.
1.
Scarpellini, Bruno
1970.
A model of intuitionistic analysis.
Commentarii Mathematici Helvetici,
Vol. 45,
Issue. 1,
p.
440.
de Jongh, D.H.J.
1970.
Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968.
Vol. 60,
Issue. ,
p.
211.
Troelstra, A.S.
1971.
Proceedings of the Second Scandinavian Logic Symposium.
Vol. 63,
Issue. ,
p.
369.
Kleene, S. C.
1973.
Cambridge Summer School in Mathematical Logic.
Vol. 337,
Issue. ,
p.
95.
Troelstra, A. S.
1973.
Cambridge Summer School in Mathematical Logic.
Vol. 337,
Issue. ,
p.
171.
Troelstra, A.S.
1977.
HANDBOOK OF MATHEMATICAL LOGIC.
Vol. 90,
Issue. ,
p.
973.
Prucnal, Tadeusz
1979.
On two problems of Harvey Friedman.
Studia Logica,
Vol. 38,
Issue. 3,
p.
247.
Weinstein, Scott
1979.
Some applications of Kripke models to formal systems of intuitionistic analysis.
Annals of Mathematical Logic,
Vol. 16,
Issue. 1,
p.
1.
Moschovakis, JoanRand
1980.
The Kleene Symposium.
Vol. 101,
Issue. ,
p.
167.
Liu, Shih-Chao
1980.
The Kleene Symposium.
Vol. 101,
Issue. ,
p.
391.
Moschovakis, Joan Rand
1981.
Constructive Mathematics.
Vol. 873,
Issue. ,
p.
250.
Posy, Carl J.
1982.
A free IPC is a natural logic: Strong completeness for some intuitionistic free logics.
Topoi,
Vol. 1,
Issue. 1-2,
p.
30.
Leivant, Daniel
1985.
Harvey Friedman's Research on the Foundations of Mathematics.
Vol. 117,
Issue. ,
p.
231.
de Swart, H. C. M.
1985.
Foundations of Logic and Linguistics.
p.
89.
Shapiro, Stewart
1985.
Intensional Mathematics.
Vol. 113,
Issue. ,
p.
11.
Myhill, John
1985.
Intensional Mathematics.
Vol. 113,
Issue. ,
p.
47.
McCarty, L.Thorne
1988.
Clausal intuitionistic logic I. fixed-point semantics.
The Journal of Logic Programming,
Vol. 5,
Issue. 1,
p.
1.