Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:06:10.398Z Has data issue: false hasContentIssue false

The degrees of hyperhyperimmune sets1

Published online by Cambridge University Press:  12 March 2014

Carl G. Jockusch Jr.*
Affiliation:
University of Illinois

Extract

In [5, Corollary 3.1] D. A. Martin characterized the degrees of the hyperhypersimple sets as those r.e. degrees a satisfying a′ = 0″. In the present paper we investigate the degrees of the hyperhyperimmune (h.h.i.) sets. We do not achieve a characterization of these degrees, but we do show that the condition a′ ≥ 0″ is sufficient, and the condition a′ ≥ 0′ is necessary, for a degree a to contain an h.h.i. set.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This research was supported by National Science Foundation grant GP 7421.

References

[1]Dekker, J. C. E. and Myhill, J., Recursive equivalence types, University of California publications in mathematics, vol. 3 (1960), pp. 67213.Google Scholar
[2]Dekker, J. C. E. and Myhill, J., Retraceable sets, Canadian Journal of Mathematics, vol. 10 (1958), pp. 357373.CrossRefGoogle Scholar
[3]Feferman, S., Some applications of the notion of forcing and generic sets, Fundamenta mathematicae, vol. 56 (1965), pp. 325345.CrossRefGoogle Scholar
[4]Jockusch, C. G. Jr. and McLaughlin, T. G., Countable retracing functions and Π20predicates, Pacific journal of mathematics (to appear).Google Scholar
[5]Martin, D. A., Classes of recursively enumerable sets and degrees of unsolvability, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295310.CrossRefGoogle Scholar
[6]Martin, D. A., A theorem on hyperhypersimple sets, this Journal, vol. 28 (1963), pp. 273278.Google Scholar
[7]Miller, W. and Martin, D. A., The degrees of hyperimmune sets, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 159166.CrossRefGoogle Scholar
[8]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[9]Sacks, G., Degrees of unsolvability, Annals of mathematics studies, no. 55, Princeton Univ. Press, Princeton, N.J., 1963.Google Scholar
[10]Shoenfield, J. R., On degrees of unsolvability, Annals of mathematics, vol. 69 (1959), pp. 644653.CrossRefGoogle Scholar
[11]Shoenfield, J.R., A theoremon minimal degrees, this Journal, vol. 31 (1966), pp. 539544.Google Scholar
[12]Yates, C. E. M., Recursively enumerable sets and retracing functions, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 8 (1962), pp. 331345.CrossRefGoogle Scholar