No CrossRef data available.
Published online by Cambridge University Press: 21 November 2022
Assume $\mathsf {ZF} + \mathsf {AD}$ and all sets of reals are Suslin. Let $\Gamma $ be a pointclass closed under $\wedge $, $\vee $, $\forall ^{\mathbb {R}}$, continuous substitution, and has the scale property. Let $\kappa = \delta (\Gamma )$ be the supremum of the length of prewellorderings on $\mathbb {R}$ which belong to $\Delta = \Gamma \cap \check \Gamma $. Let $\mathsf {club}$ denote the collection of club subsets of $\kappa $. Then the countable length everywhere club uniformization holds for $\kappa $: For every relation $R \subseteq {}^{<{\omega _1}}\kappa \times \mathsf {club}$ with the property that for all $\ell \in {}^{<{\omega _1}}\kappa $ and clubs $C \subseteq D \subseteq \kappa $, $R(\ell ,D)$ implies $R(\ell ,C)$, there is a uniformization function $\Lambda : \mathrm {dom}(R) \rightarrow \mathsf {club}$ with the property that for all $\ell \in \mathrm {dom}(R)$, $R(\ell ,\Lambda (\ell ))$. In particular, under these assumptions, for all $n \in \omega $, $\boldsymbol {\delta }^1_{2n + 1}$ satisfies the countable length everywhere club uniformization.