Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T06:47:37.206Z Has data issue: false hasContentIssue false

Contiguity and distributivity in the enumerable Turing degrees

Published online by Cambridge University Press:  12 March 2014

Rodney G. Downey
Affiliation:
Department of Mathematics, Victoria University, P. O. Box 600 Wellington, New Zealand E-mail: [email protected]
Steffen Lempp
Affiliation:
Department of Mathematics, University of Wisconsin, Madison WI 53706, USA E-mail: [email protected]

Abstract

We prove that a (recursively) enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no m-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ambos-Spies, K., Contiguous r.e. degrees, Computation and proof theory (Börger, E., Oberschelp, W., Richter, M. M., Schinzel, B., and Thomas, W., editors), Springer Lecture Notes in Mathematics, no. 1104, Springer-Verlag, Berlin, 1984, pp. 137.Google Scholar
[2]Ambos-Spies, K., Antimitotic recursively enumerable sets, Z. Math. Logik Grundlagen Math., vol. 31 (1985), pp. 461467.CrossRefGoogle Scholar
[3]Ambos-Spies, K., Ding, D., and Fejer, P., Embedding lattices preserving 1 below a nonzero recursive enumerable Turing degree, Logical methods (Crossley, J.et al., editors), Birkhäuser, Boston, 1994, pp. 92129.Google Scholar
[4]Ambos-Spies, K. and Fejer, P., Degree theoretical splitting properties of recursively enumerable sets, this Journal, vol. 53 (1988), pp. 11101137.Google Scholar
[5]Ambos-Spies, K. and Soare, R.I., The recursively enumerable degrees have infinitely many one-types, Annals of Pure and Applied Logic, vol. 44 (1989), pp. 123.CrossRefGoogle Scholar
[6]Cholak, P. and Downey, R. G., Lattice nonembeddings and intervals in the recursively enumerable degrees, Annals Pure and Applied Logic, vol. 61 (1993), pp. 195222.CrossRefGoogle Scholar
[7]Downey, R. G., degrees and transfer theorems, Illinois Journal Mathematics, vol. 31 (1987), pp. 419427.CrossRefGoogle Scholar
[8]Downey, R. G., Localization of a theorem of Ambos-Spies and the strong antisplitting property, Archiv math. Logik Grundlag, vol. 26 (1987), pp. 127136.CrossRefGoogle Scholar
[9]Downey, R. G., Subsets of hypersimplesets, Pacific Journal of Mathematics, vol. 127 (1987), pp. 299319.CrossRefGoogle Scholar
[10]Downey, R. G., A contiguous nonbranching degree, Z. Math. Logik Grund. Math., vol. 35 (1989), pp. 375383.CrossRefGoogle Scholar
[11]Downey, R. G. and Jockusch, C. G. Jr., T-degrees, jump classes and strong reducibilities, Transactions of the American Mathematical Society, vol. 301 (1987), pp. 103136.CrossRefGoogle Scholar
[12]Downey, R. G. and Mourad, J., Superbranching degrees, Proceedings Oberwolfach 1989, Springer-Verlag Lecture Notes in Mathematics, 1990, pp. 175186.Google Scholar
[13]Downey, R. G. and Remmel, J. B., Classification of degree classes associated with r.e. subspaces, Annals of Pure Applied Logic, vol. 42 (1989), pp. 105125.CrossRefGoogle Scholar
[14]Downey, R. G. and Shore, R. A., Degree theoretical definitions of low2 recursively enumerable sets, this Journal, vol. 60 (1995), no. 3, pp. 727756.Google Scholar
[15]Downey, R. G. and Slaman, T. A., Completely mitotic r.e. degrees, Annals of Pure and Applied Logic, vol. 41 (1989), pp. 119152.CrossRefGoogle Scholar
[16]Downey, R. G. and Stob, M., Minimal pairs in initial segments of the recursively enumerable degrees, Israel Journal of Mathematics, to appear.Google Scholar
[17]Downey, R. G. and Stob, M., Structural interactions of the recursively enumerable W- and T-degrees, Annals of Pure and Applied Logic, vol. 31 (1986), pp. 205236.CrossRefGoogle Scholar
[18]Downey, R. G. and Stob, M., Splitting theorems in recursion theory. Annals of Pure and Applied Logic, vol. 65 (1993), pp. 1106.CrossRefGoogle Scholar
[19]Downey, R. G. and Welch, L. V., Splitting properties of r.e. sets and degrees, this Journal, vol. 32 (1986), pp. 137151.Google Scholar
[20]Friedberg, R. and Rogers, H. Jr., Reducibilities and completeness for sets of integers, Z. Math. Logik Grundlagen Math., vol. 5 (1959), pp. 117125.CrossRefGoogle Scholar
[21]Ingrassia, M., P-genericity for recursively enumerable sets, Thesis, University of Illinois at Urbana, 1981.Google Scholar
[22]Jockusch, C., Relationships between reducibilities, Transactions of the American Mathematical Society, vol. 162 (1969), pp. 229237.CrossRefGoogle Scholar
[23]Jockusch, C. and Shore, R., Pseudo-jump operators I: The r. e. case, Transactions of the American Mathematical Society, vol. 275 (1983), pp. 599609.Google Scholar
[24]Lachlan, A. H., Embedding nondistributive lattices in the recursively enumerable degrees, Conference in mathematical logic, London, 1970 (Hodges, W., editor), Springer-Verlag, New York, 1972, pp. 149177.Google Scholar
[25]Lachlan, A. H., A recursively enumerable degree that will not split over all lesser ones, Annals of Mathematical Logic, vol. 9 (1975), pp. 307365.CrossRefGoogle Scholar
[26]Ladner, R. E., A completely mitotic nonrecursive recursively enumerable degree, Transactions of the American Mathematical Society, vol. 184 (1973), pp. 479507.CrossRefGoogle Scholar
[27]Ladner, R. E. and Sasso, L. P. Jr., The weak truth table degrees of recursively enumerable sets, Annals of Mathematical Logic, vol. 8 (1975), pp. 429448.CrossRefGoogle Scholar
[28]Lerman, M. and Remmel, J. B., The universal splitting property, II, this Journal, vol. 49 (1984), pp. 137150.Google Scholar
[29]Odifreddi, P., Strong reducibilities, Bulletin (New Series) of the American Mathematical Society, vol. 4 (1981), pp. 3786.CrossRefGoogle Scholar
[30]Odifreddi, P., Classical recursion theory, North-Holland, Amsterdam, 1990.Google Scholar
[31]Sacks, G., The recursively enumerable degrees are dense, Annals of Mathematics, vol. 80 (1963), no. 2, pp. 211231.CrossRefGoogle Scholar
[32]Slaman, T., The density of infima in the recursively enumerable degrees, Annals Pure and Applied Logic, vol. 52 (1991), pp. 155179.CrossRefGoogle Scholar
[33]Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, New York, 1987.CrossRefGoogle Scholar
[34]Stob, M., Wtt-degrees and T-degrees of recursively enumerable sets, this Journal, vol. 48 (1983), pp. 921930.Google Scholar