Published online by Cambridge University Press: 12 March 2014
Let T be a complete first-order theory over a finite relational language which is axiomatized by universal and existential sentences. It is shown that T is almost trivial in the sense that the universe of any model of T can be written . where F is finite and I 1, I 2, …, In are mutually indiscernible over F. Some results about complete theories with ∃∀-axioms over a finite relational language are also mentioned.