Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T22:00:13.008Z Has data issue: false hasContentIssue false

COMPLETE INTUITIONISTIC TEMPORAL LOGICS FOR TOPOLOGICAL DYNAMICS

Published online by Cambridge University Press:  04 February 2022

JOSEPH BOUDOU
Affiliation:
INSTITUT DE RECHERCHE EN INFORMATIQUE DE TOULOUSE TOULOUSE UNIVERSITYTOULOUSE, FRANCEE-mail:[email protected]
MARTÍN DIÉGUEZ
Affiliation:
LABORATOIRE D’ETUDE ET DE RECHERCHE EN INFORMATIQUE D’ANGERS UNIVERSITÉ D’ANGERSANGERS, FRANCEE-mail:[email protected]
DAVID FERNÁNDEZ-DUQUE
Affiliation:
DEPARTMENT OF MATHEMATICS GHENT UNIVERSITYGHENT, BELGIUME-mail:[email protected]

Abstract

The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$ , recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, E., The General Topology of Dynamical Systems, Graduate Studies in Mathematics, vol. 1, American Mathematical Society, Providence, RI, 1993.Google Scholar
Aleksandroff, P., Diskrete räume. Matematicheskii Sbornik, vol. 2 (1937), pp. 501518.Google Scholar
Artëmov, S. N., Davoren, J. M., and Nerode, A., Modal logics and topological semantics for hybrid systems, Technical report msi 97-05, Cornell University, 1997.CrossRefGoogle Scholar
Balbiani, P., Boudou, J., Diéguez, M., and Fernández-Duque, D., Intuitionistic linear temporal logics, Transactions on Computer Logic, vol. 21 (2020), pp. 14:114:32.Google Scholar
Balbiani, P. and Diéguez, M., Temporal here and there, Logics in Artificial Intelligence (Michael, L. and Kakas, A. C., editors), Springer, Cham, 2016, pp. 8196.CrossRefGoogle Scholar
Birkhoff, G. D., Quelques théorèmes sur le mouvement des systèmes dynamiques. Bulletin de la Société mathématiques de France, vol. 40 (1912), pp. 305323.CrossRefGoogle Scholar
Boudou, J., Diéguez, M., and Fernández-Duque, D., A decidable intuitionistic temporal logic, 26th EACSL Annual Conference on Computer Science Logic (CSL), vol. 82, 2017, pp. 14:114:17.Google Scholar
Boudou, J., Diéguez, M., Fernández-Duque, D., and Kremer, P., Exploring the jungle of intuitionistic temporal logics. Theory and Practice of Logic Programming, vol. 21 (2021), no. 4, pp. 459492.CrossRefGoogle Scholar
Davoren, J. M., On intuitionistic modal and tense logics and their classical companion logics: Topological semantics and bisimulations. Annals of Pure and Applied Logic, vol. 161 (2009), no. 3, pp. 349367.CrossRefGoogle Scholar
Dawar, A. and Otto, M., Modal characterisation theorems over special classes of frames. Annals of Pure and Applied Logic, vol. 161 (2009), pp. 142; Extended journal version LICS 2005 paper.CrossRefGoogle Scholar
Fernández-Duque, D., Dynamic topological completeness for ℝ 2. Logic Journal of the IGPL, vol. 15 (2007), no. 1, pp. 77107.CrossRefGoogle Scholar
Fernández-Duque, D., Non-deterministic semantics for dynamic topological logic. Annals of Pure and Applied Logic, vol. 157 (2009), nos. 2–3, pp. 110121.CrossRefGoogle Scholar
Fernández-Duque, D., Dynamic topological logic interpreted over minimal systems. Journal of Philosophical Logic, vol. 40 (2011), no. 6, pp. 767804.CrossRefGoogle Scholar
Fernández-Duque, D., On the modal definability of simulability by finite transitive models. Studia Logica, vol. 98 (2011), pp. 347373.CrossRefGoogle Scholar
Fernández-Duque, D., Tangled modal logic for spatial reasoning, 22nd International Joint Conference on Artificial Intelligence (IJCAI’11) (Walsh, T., editor), AAAI Press, Menlo Park, 2011, pp. 857862.Google Scholar
Fernández-Duque, D., Dynamic topological logic interpreted over metric spaces, this Journal, vol. 77 (2012), pp. 308–328.Google Scholar
Fernández-Duque, D., A sound and complete axiomatization for dynamic topological logic, this Journal, vol. 77 (2012), no. 3, pp. 947–969.Google Scholar
Fernández-Duque, D., Non-finite axiomatizability of dynamic topological logic. ACM Transactions on Computational Logic, vol. 15 (2014), no. 1, pp. 4:14:18.CrossRefGoogle Scholar
Fernández-Duque, D., The intuitionistic temporal logic of dynamical systems. Logical Methods in Computer Science, vol. 14 (2018), no. 3, pp. 135.Google Scholar
Gabelaia, D., Kurucz, A., Wolter, F., and Zakharyaschev, M., Non-primitive recursive decidability of products of modal logics with expanding domains. Annals of Pure and Applied Logic, vol. 142 (2006), nos. 1–3, pp. 245268.CrossRefGoogle Scholar
Goldblatt, R. and Hodkinson, I. M., Spatial logic of tangled closure operators and modal mu-calculus. Annals of Pure and Applied Logic, vol. 168 (2017), no. 5, pp. 10321090.CrossRefGoogle Scholar
Goldblatt, R. and Hodkinson, I. M., The finite model property for logics with the tangle modality. Studia Logica, vol. 106 (2018), no. 1, pp. 131166.CrossRefGoogle Scholar
de Jongh, D. and Yang, F., Jankov’s theorems for intermediate logics in the setting of universal models, 8th International Tbilisi Symposium on Logic, Language, and Computation (TbiLLC’09), Lecture Notes in Computer Science, Revised Selected Papers (Bezhanishvili, N., Löbner, S., Schwabe, K. and Spada, L., editors), 2009, Springer, New York, pp. 5376.CrossRefGoogle Scholar
Kamide, N. and Wansing, H., Combining linear-time temporal logic with constructiveness and paraconsistency. Journal of Applied Logic, vol. 8 (2010), no. 1, pp. 3361.CrossRefGoogle Scholar
Kojima, K. and Igarashi, A., Constructive linear-time temporal logic: Proof systems and Kripke semantics. Information and Computation, vol. 209 (2011), no. 12, pp. 14911503.CrossRefGoogle Scholar
Konev, B., Kontchakov, R., Wolter, F., and Zakharyaschev, M., Dynamic topological logics over spaces with continuous functions, Advances in Modal Logic, vol. 6 (Governatori, G., Hodkinson, I., and Venema, Y., editors), College Publications, Rickmansworth, 2006, pp. 299318.Google Scholar
Kremer, P., A small counterexample in intuitionistic dynamic topological logic, 2004. Available at http://individual.utoronto.ca/philipkremer/onlinepapers/counterex.pdf (accessed 4 February, 2022).Google Scholar
Kremer, P. and Mints, G., Dynamic topological logic. Annals of Pure and Applied Logic, vol. 131 (2005), pp. 133158.CrossRefGoogle Scholar
Lichtenstein, O. and Pnueli, A., Propositional temporal logics: Decidability and completeness. Logic Journal of the IGPL, vol. 8 (2000), no. 1, pp. 5585.CrossRefGoogle Scholar
Mints, G., A Short Introduction to Intuitionistic Logic, University Series in Mathematics, Springer, New York, 2000.Google Scholar
Munkres, J. R., Topology, Featured Titles for Topology Series, Prentice Hall, Upper Saddle River, NJ, 2000.Google Scholar
Nishimura, H., Semantical analysis of constructive PDL . Publications of the Research Institute for Mathematical Sciences, vol. 18 (1982), pp. 427438.CrossRefGoogle Scholar
Poincaré, H., Sur le problème des trois corps et les équations de la dynamique . Acta Mathematica, vol. 13 (1890), pp. 1270.Google Scholar
Simpson, A. K., The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh, 1994.Google Scholar
Slavnov, S., On completeness of dynamic topological logic. Moscow Mathematics Journal, vol. 5 (2005), pp. 477492.CrossRefGoogle Scholar
Tarski, A., Der Aussagenkalkül und die Topologie. Fundamenta Mathematica, vol. 31 (1938), pp. 103134.CrossRefGoogle Scholar