Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T10:16:27.973Z Has data issue: false hasContentIssue false

Classifying positive equivalence relations

Published online by Cambridge University Press:  12 March 2014

Claudio Bernardi
Affiliation:
Istituto di Matematica, Università di Siena, Siena (Italy)
Andrea Sorbi
Affiliation:
Istituto di Matematica, Università di Siena, Siena (Italy)

Abstract

Given two (positive) equivalence relations ~1, ~2 on the set ω of natural numbers, we say that ~1 is m-reducible to ~2 if there exists a total recursive function h such that for every x, yω, we have x ~1y iff hx ~2hy. We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a “uniformity property” holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration.

From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bernardi, C., On the relation provable equivalence and on partitions in effectively inseparable sets, Studia Logica, vol. 40 (1981), pp. 2937.CrossRefGoogle Scholar
[2]Cleave, J.P., Creative functions, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 7 (1961), pp. 205212.CrossRefGoogle Scholar
[3]Eršov, Ju. L., Theorie der Numerierungen. I, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 289388.CrossRefGoogle Scholar
[4]Eršov, Ju. L., Theorie der Numerierungen. II, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 473584.CrossRefGoogle Scholar
[5]Eršov, Ju. L., Positive equivalences (English translation), Algebra and Logic, vol. 10 (1973), pp. 378394.CrossRefGoogle Scholar
[6]Myhill, J., Creative sets, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), pp. 97108.CrossRefGoogle Scholar
[7]Pour-el, M.B. and Putnam, H., Recursively enumerable classes and their application to recursive sequences of formal theories, Archiv für Mathematische Logik und Grundlagenforschung, vol. 8 (1965), pp. 104121.CrossRefGoogle Scholar
[8]Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar
[9]Smullyan, R.M., Theory of formal systems, rev. ed., Annals of Mathematics Studies, no. 47, Princeton University Press, Princeton, N.J., 1961.CrossRefGoogle Scholar
[10]Sorbi, A., Numerazioni positive, r.e. classi e formule, Unione Matematica Italiana. Bolletino. B, Serie VI, vol. 1–B (1982), pp. 403411.Google Scholar
[11]Visser, A., Numerations, λ-calculus and arithmetic, To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism (Seldin, J.P. and Hindley, J.R., Editors), Academic Press, New York, 1980, pp. 259284.Google Scholar