Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T20:43:34.875Z Has data issue: false hasContentIssue false

Bimodal logics for extensions of arithmetical theories

Published online by Cambridge University Press:  12 March 2014

Lev D. Beklemishev*
Affiliation:
Steklov Mathematical Institute, Vavilov Str. 42, Moscow 117966, Russia, E-mail: [email protected]

Abstract

We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of (IΔ0 + EXP, PRA); (PRA, IΣn); (IΣm, IΣn) for 1 ≤ m < n; (PA, ACA0); (ZFC, ZFC + CH); (ZFC, ZFC + ¬CH) etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Artemov, S. N., Arithmetically complete modal theories, Semiotika i Informatika, vol. 14 (1980), pp. 115133, in Russian. English translation in: American Mathematical Society Translations, Series 2, 135: 39–54, 1987.Google Scholar
[2]Beklemishev, L. D., On the classification of propositional provability logics, Izvestiya Akademii Nauk SSSR, ser. mat., vol. 53 (1989), no. 5, pp. 915943, in Russian. English translation in Mathematics of the USSR-Izvestiya, vol. 35 (1990), pp. 247–275.Google Scholar
[3]Beklemishev, L. D., Provability logics for natural Turing progressions of arithmetical theories, Studia Logica, vol. L (1991), no. 1, pp. 107128.CrossRefGoogle Scholar
[4]Beklemishev, L. D., Independent numerations of theories and recursive progressions, Sibirskii Matematicheskii Zhurnal, vol. 33 (1992), pp. 2246, in Russian. English translation in Siberian Mathematical Journal, vol. 33 (1992), pp. 760–783.Google Scholar
[5]Beklemishev, L. D., On bimodal logics of provability, Annals of Pure and Applied Logic, vol. 68 (1994), no. 2, pp. 115159.CrossRefGoogle Scholar
[6]Berarducci, A. and Verbrugge, R., On the provability logic of bounded arithmetic, Annals of Pure and Applied Logic, vol. 61 (1993), pp. 7593.CrossRefGoogle Scholar
[7]Boolos, G., The analytical completeness of Dzhaparidze's polymodal logics, Annals of Pure and Applied Logic, vol. 61 (1993), pp. 95111.CrossRefGoogle Scholar
[8]Boolos, G., The logic of provability, Cambridge University Press, Cambridge, 1993.Google Scholar
[9]Carlson, T., Modal logics with several operators and provability interpretations, Israel Journal of Mathematics, vol. 54 (1986), pp. 1424.CrossRefGoogle Scholar
[10]Dzhaparidze, G. K., The modal logical means of investigation of provability, Ph.D. thesis, Moscow State University, 1986.Google Scholar
[11]Feferman, S., Arithmetization of metamathematics in a general setting, Fundamenta Mathematicae vol. 49 (1960), pp. 3592.CrossRefGoogle Scholar
[12]Guaspari, D., Partially conservative sentences and interpretability, Transactions of the American Mathematical Society, vol. 254 (1979), pp. 4768.CrossRefGoogle Scholar
[13]Guaspari, D. and Solovay, R., Rosser sentences, Annals of Mathematical Logic, vol. 16 (1979), pp. 8199.CrossRefGoogle Scholar
[14]Hájek, P. and Pudlák, P., Metamathematics of first order arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1993.CrossRefGoogle Scholar
[15]Ignatiev, K. N., On strong provability predicates and the associated modal logics, this Journal, vol. 58 (1993), pp. 249290.Google Scholar
[16]Ignjatovic, A. D., Fragments of first and second order arithmetic and length of proof, Ph.D. thesis, University of California at Berkeley, 1990.Google Scholar
[17]Kreisel, G. and Lévy, A., Reflection principles and their use for establishing the complexity of axiomatic systems, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 97142.CrossRefGoogle Scholar
[18]Leivant, D., The optimality of induction as an axiomatization of arithmetic, this Journal, vol. 48 (1983), pp. 182184.Google Scholar
[19]Lindström, P., On partially conservative sentences and interpretability, Proceedings of the American Mathematical Society, vol. 91 (1984), no. 3, pp. 436443,CrossRefGoogle Scholar
[20]Montagna, F., Provability in finite subtheories of PA, this Journal, vol. 52 (1987), no. 2, pp. 494511.Google Scholar
[21]Parsons, C., On a number-theoretic choice schema and its relation to induction, Intuitionism and proof theory (Kino, , Myhill, , and Vessley, , editors), North Holland, Amsterdam, 1970, pp. 459473.Google Scholar
[22]Pozsgay, L. J., Gödel's second theorem for elementary arithmetic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 6780.CrossRefGoogle Scholar
[23]Rose, H. E., Subrecursion: Functions and hierarchies, Clarendon Press, Oxford, 1984.Google Scholar
[24]Schmerl, U. R., A fine structure generated by reflection formulas over primitive recursive arithmetic, Logic colloquium '78 (Boffa, M., van Dalen, D., and McAloon, K., editors), North Holland, Amsterdam, 1979, pp. 335350.Google Scholar
[25]Schwichtenberg, H., Some applications of cut-elimination, Handbook of mathematical logic (Barwise, J., editor), North Holland, Amsterdam, 1977, pp. 867896.CrossRefGoogle Scholar
[26]Shavrukov, V. Yu., On Rosser's provability predicate, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 37 (1991), pp. 317330.CrossRefGoogle Scholar
[27]Shavrukov, V. Yu., A smart child of Peano's, Notre Dame Journal of Formal Logic, vol. 35 (1994), no. 2, pp. 161185.CrossRefGoogle Scholar
[28]Shoenfield, J. R., Mathematical logic, Addison-Wesley Publishing Company, 1967.Google Scholar
[29]Sieg, W., Fragments of arithmetic, Annals of Pure and Applied Logic, vol. 28 (1985), pp. 3371.CrossRefGoogle Scholar
[30]Smoryński, C., The incompleteness theorems, Handbook of mathematical logic (Barwise, J., editor), North Holland, Amsterdam, 1977, pp. 821865.CrossRefGoogle Scholar
[31]Smoryński, C., Self-reference and modal logic, Springer-Verlag, Berlin, Heidelberg, New York, 1985.CrossRefGoogle Scholar
[32]Solovay, R. M., Provability interpretations of modal logic, Israel Journal of Mathematics, vol. 28 (1976), pp. 3371.Google Scholar
[33]Visser, A., Peano's smart children. A provability logical study of systems with built-in consistency, Notre Dame Journal of Formal Logic, vol. 30 (1989), pp. 161196.CrossRefGoogle Scholar
[34]Visser, A., Interpretability logic, Mathematical logic (Petkov, P. P., editor), Plenum Press, New York, 1990, pp. 175208.CrossRefGoogle Scholar
[35]Petkov, P. P., A course in bimodal provability logic, Annals of Pure and Applied Logic, vol. 73 (1995), pp. 109142.Google Scholar
[36]Wilkie, A. and Paris, J., On the scheme of induction for bounded arithmetic formulas, Annals of Pure and Applied Logic, vol. 35 (1987), pp. 261302.CrossRefGoogle Scholar